

Mastering OpenVPN

2

Table of Contents

Mastering OpenVPN
Credits
About the Authors
About the Reviewers
www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?
Free access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Introduction to OpenVPN
What is a VPN?
Types of VPNs

PPTP
IPSec
SSL-based VPNs
OpenVPN

Comparison of VPNs
Advantages and disadvantages of PPTP
Advantages and disadvantages of IPSec
Advantages and disadvantages of SSL-based VPNs
Advantages and disadvantages of OpenVPN
History of OpenVPN

OpenVPN packages
The open source (community) version
The closed source (commercial) Access Server
The mobile platform (mixed) OpenVPN/OpenVPN Connect
Other platforms

OpenVPN internals
The tun/tap driver
The UDP and TCP modes
The encryption protocol
The control and data channels
Ciphers and hashing algorithms
OpenSSL versus PolarSSL

Summary
2. Point-to-point Mode

Pros and cons of the key mode
The first example

TCP protocol and different ports
The TAP mode
The topology subnet
The cleartext tunnel

OpenVPN secret keys
Using multiple keys
Using different encryption and authentication algorithms

Routing
Configuration files versus the command line

The complete setup
Advanced IP-less setup

Three-way routing
Route, net_gateway, vpn_gateway, and metrics

Bridged tap adapter on both ends
Removing the bridges

Combining point-to-point mode with certificates
Summary

3. PKIs and Certificates
An overview of PKI

PKI using Easy-RSA
Building the CA
Certificate revocation list
Server certificates
Client certificates
PKI using ssl-admin

3

OpenVPN server certificates
OpenVPN client certificates
Other features
Multiple CAs and CRLs
Extra security – hardware tokens, smart cards, and PKCS#11

Background information
Supported platforms
Initializing a hardware token
Generating a certificate/private key pair
Generating a private key on a token
Generating a certificate request
Writing an X.509 certificate to the token
Getting a hardware token ID
Using a hardware token with OpenVPN

Summary
4. Client/Server Mode with tun Devices

Understanding the client/server mode
Setting up the Public Key Infrastructure
Initial setup of the client/server mode

Detailed explanation of the configuration files
Topology subnet versus topology net30

Adding extra security
Using tls-auth keys
Generating a tls-auth key
Checking certificate key usage attributes

Basic production-level configuration files
TCP-based configuration
Configuration files for Windows

Routing and server-side routing
Special parameters for the route option
Masquerading

Redirecting the default gateway
Client-specific configuration – CCD files

How to determine whether a CCD file is properly processed
CCD files and topology net30

Client-side routing
In-depth explanation of the client-config-dir configuration
Client-to-client traffic

The OpenVPN status file
Reliable connection tracking for UDP mode

The OpenVPN management interface
Session key renegotiation

A note on PKCS#11 devices
Using IPv6

Protected IPv6 traffic
Using IPv6 as transit

Advanced configuration options
Proxy ARP

How does Proxy ARP work?
Assigning public IP addresses to clients

Summary
5. Advanced Deployment Scenarios in tun Mode

Enabling file sharing over VPN
Using NetBIOS names
Using nbtstat to troubleshoot connection problems

Using LDAP as a backend authentication mechanism
Troubleshooting the LDAP backend authentication

Filtering OpenVPN
FreeBSD example
A Windows example
Policy-based routing

Windows network locations – public versus private
Background
Changing the TAP-Win adapter location using the redirect-gateway

Using the Group Policy editor to force an adapter to be private
Changing the TAP-Win adapter location using extra gateways
Redirecting all traffic in combination with extra gateways

Using OpenVPN with HTTP or SOCKS proxies
HTTP proxies
SOCKS proxies

Summary
6. Client/Server Mode with tap Devices

The basic setup
Enabling client-to-client traffic

Filtering traffic between clients
Disadvantage of the proxy_arp_pvlan method
Filtering traffic using the pf filter of OpenVPN

4

Using the tap device (bridging)
Bridging on Linux

Tearing down the bridge
Bridging on Windows

Using an external DHCP server
Checking broadcast and non-IP traffic

Address Resolution Protocol traffic
NetBIOS traffic

Comparing tun mode to tap mode
Layer 2 versus layer 3
Routing differences and iroute
Client-to-client filtering
Broadcast traffic and "chattiness" of the network
Bridging

Summary
7. Scripting and Plugins

Scripting
Server-side scripts

--setenv and --setenv-safe
--script-security
--up-restart
--up
--route-up
--tls-verify
--auth-user-pass-verify
--client-connect
--learn-address
--client-disconnect
--route-pre-down
--down

Client-side scripts
--setenv and --setenv-safe
--script-security
--up-restart
--tls-verify
--ipchange
--up
--route-up
--route-pre-down
--down

Examples of server scripts
Client-connect scripts

Client authentication
Client authorization

Example 1—client-selected routes
Example 2—track client connection statistics
Example 3—disconnect user after X minutes

Examples of client scripts
Example 4—mount NFS share
Example 5—using all scripts at once

The server-side script log
Environment variables set in the server-side scripts

--up
--route-up
--tls-verify
--auth-user-pass-verify
--client-connect
--learn-address
--client-disconnect
--route-pre-down and --down

The client-side script log
Environment variables set in the client-side scripts

Plugins
Down-root
The auth-pam plugin

Summary
8. Using OpenVPN on Mobile Devices and Home Routers

Using the OpenVPN for an Android app
Creating an OpenVPN app profile
Using the PKCS#12 file

Using the OpenVPN Connect app for Android
Using the OpenVPN Connect app for iOS
Integrating smart phones into an existing VPN setup
Using a home router as a VPN client
Using a home router as a VPN server
Summary

9. Troubleshooting and Tuning

5

How to read the log files
Detecting a non-working setup

Fixing common configuration mistakes
Wrong CA certificate in the client configuration

How to fix
Client certificate not recognized by the server

How to fix
Client certificate and private key mismatch

How to fix
The auth and tls-auth key mismatch

How to fix
The MTU size mismatch

How to fix
The Cipher mismatch

How to fix
The Compression mismatch

How to fix
The fragment mismatch

How to fix
The tun versus tap mismatch

How to fix
The client-config-dir issues

How to fix
No access to the tun device in Linux

How to fix
Missing elevated privileges in Windows

How to fix
Troubleshooting routing issues

Drawing a detailed picture
Start in the middle and work your way outward
Find a time to temporarily disable firewall
If all else fails, use tcpdump

How to optimize performance by using ping and iperf
Using ping
Using iperf
Gigabit networking

Analyzing OpenVPN traffic by using tcpdump
Summary

10. Future Directions
Current strengths
Current weaknesses

Scaling at gigabit speeds and above
Where we are going

Improved compression support
Per-client compression
New cryptographic routines
Mixed certificate/username authentication
IPv6 support
Windows privilege separation

Summary
Index

6

Mastering OpenVPN

7

Mastering OpenVPN
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1260815

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-313-6

www.packtpub.com

8

http://www.packtpub.com

Credits
Authors

Eric F Crist

Jan Just Keijser

Reviewers

Stefan Agner

Emmanuel Bretelle

Michael A Cossenas

Guillaume Destuynder

Commissioning Editor

Amarabha Banerjee

Acquisition Editors

Richard Brookes-Bland

Larissa Pinto

Content Development Editor

Pooja Nair

Technical Editor

Mitali Somaiya

Copy Editors

Roshni Banerjee

Rashmi Sawant

Project Coordinator

Judie Jose

Proofreader

Safis Editing

Indexer

Hemangini Bari

Graphics

Sheetal Aute

Production Coordinator

Nitesh Thakur

Cover Work

Nitesh Thakur

9

About the Authors
Eric F Crist is an IT professional with experience in hardware and software systems integration. With a few others, he has had a key role in
building the OpenVPN community to what it is today. He works in research and development as a principal computer system specialist for St.
Jude Medical. His role involves system engineering, configuration management, and cyber security analysis for products related to the
Cardiovascular Ablation Technology division.

You can find him online at the Freenode and EFNet IRC networks as ecrist. He calls the Twin Cities, Minnesota, his home and lives with his
wife, DeeDee, his son, Lance, and his daughter, Taylor.

Jan Just Keijser is an open source professional from Utrecht, the Netherlands. He has a wide range of experience in IT, ranging from providing
user support, system administration, and systems programming to network programming. He has worked for various IT companies since 1989.
He has been working mainly on Unix/Linux platforms since 1995. He was an active USENET contributor in the early 1990s.

Currently, he is employed as a senior scientific programmer in Amsterdam, the Netherlands, at Nikhef, the institute for subatomic physics from
the Dutch Foundation for Fundamental Research on Matter (FOM). He is working on multi-core and many-core computing systems, grid
computing, as well as smartcard applications. His open source interests include all types of virtual private networking, including IPSec, PPTP,
and of course, OpenVPN. In 2004, he discovered OpenVPN and has been using it ever since.

His first book was OpenVPN 2 Cookbook, Packt Publishing.

10

About the Reviewers
Stefan Agner completed his bachelor's degree in information technology from the Lucerne University of Applied Sciences and Arts in 2009
and has worked in the field of embedded systems as a software engineer since then. He focuses on driver development and system programming
and prefers to work with the open source software stack. Currently, he is working to upstream Linux support for the ARM-based Freescale
Vybrid SoC for his employer, Toradex AG.

He describes himself as an open source enthusiast who works with Linux and other free software not only in his professional life as a software
engineer, but also in his spare time. At several smaller companies, he successfully deployed and managed OpenVPN as the primary VPN
solution. For his private IT infrastructure, he runs OpernWrt-powered routers, which serve as OpenVPN servers. He also likes to blog about
technical stuff, such as fascinating projects and interesting problems he comes across.

Emmanuel Bretelle has 10 years of experience in devops, systems, and network administration. He has leveraged OpenVPN, its plugin
capabilities, and cross-platform compatibility to help connect employees across the globe to corporate networks.

He has also developed and open sourced two OpenVPN plugins: openvpn-mysql-auth and openvpn-ldap-auth.

When not fiddling around with new technology or automating his way out, he enjoys traveling and chilling out.

Michael A Cossenas is a Linux/network administrator from Athens, Greece.

He has been working as a network security specialist for Digital Sima, a company specializing in LAN/WAN networking. He is now employed
as a subcontractor for IBM Greece and manages 50 plus SUSE-based Linux servers as one of their customers.

His first experience with Linux was way back in 1998, using RedHat 5.2. Since then, he has worked on various open source projects, including
Zimbra, DRBD, KVM, and Postfix.

He is also an OpenVPN forum moderator.

He works as a subcontractor for IBM Greece in the SO (Strategic Outsourcing) department.

I would like to thank my family (my wife, Froso, my son, Antony, and my daughter, Kate) for supporting me in difficult times.

11

www.PacktPub.com
Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook
version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
<service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive
discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read
Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use
your login credentials for immediate access.

12

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.PacktPub.com

Preface
Privacy and security on the Internet and in private networks is a growing concern and is increasingly common in the news, where there are
breaches of each. Virtual private networks (VPN) were created out of a need for secured communications. The most popular and widely used
open source VPN software today is OpenVPN. Mastering OpenVPN aims to educate you on deployment, troubleshooting, and configuration of
OpenVPN and provide solid use cases for various scenarios.

What this book covers
Chapter 1, Introduction to OpenVPN, discusses the various types of Virtual Private Networks and some of their various strengths and
weaknesses. PPTP, OpenVPN, IPSec, and other protocols are also discussed in this chapter.

Chapter 2, Point-to-point Mode, covers the OpenVPN roots, point-to-point mode, and the initially only supported mode. It also covers the tap
mode in a bridged scenario and an uncommon configuration.

Chapter 3, PKIs and Certificates, explains the complex concept of X.509 certificates and PKIs with examples and a demonstration of a couple
of utilities. It also covers how to create a certificate chain and deploy that chain to their VPN.

Chapter 4, Client/Server Mode with tun Devices, walks you through the most common deployment mode, a tun or routed, and its setup. It also
discusses the passing of client-backed routes along with IPv4 and IPv6.

Chapter 5, Advanced Deployment Scenarios in tun Mode, covers policy-based routing and configuring OpenVPN to integrate your VPN clients
with the rest of the LAN. Complex examples of tun mode are examined, showing that they are appropriate even in advanced scenarios.

Chapter 6, Client/Server Mode with tap Devices, discusses the often misused and less commonly deployed tap or bridged mode VPNs. Solid
examples of broadcast and OSI layer 2 traffic are demonstrated in this chapter.

Chapter 7, Scripting and Plugins, helps you gain an understanding of the methods to extent the VPN, including authentication, routing, and
protocol enhancements. This chapter helps an administrator create a local experience for a worker or a user on the move.

Chapter 8, Using OpenVPN on Mobile Devices and Home Routers, helps you learn how to use home router OSes and features to deploy
OpenVPN. We understand that it's not just enterprise or commercial users looking to protect their privacy and data. Increasingly, home users
desire to deploy secure connections to their home resources.

Chapter 9, Troubleshooting and Tuning, will help you become an expert in your OpenVPN deployment by learning how to troubleshoot
problems and bugs. The ability to identify issues creates a solid and reliable installation and confidence in your users.

Chapter 10, Future Directions, gives you a brief history and lengthier discussion of the future direction of OpenVPN, and the mindset of the
developers is revealed. It also helps you understand the reasoning and history behind the various decisions behind features and bugs.

13

What you need for this book
You should have the following entities for a complete experience of reading and following Mastering OpenVPN:

A Unix, Linux, or Mac OS X system
A Windows system
A server (Windows or Linux, whichever is preferred, Linux or FreeBSD suggested)
A solid understanding (101 or 201 level) of networking (UDP and TCP over IP)

An IRC client or a web browser is also helpful. When you run into trouble or have too many questions, pop in to #openvpn on
irc.freenode.net, and look for @janjust or @ecrist. We look forward to talking to you!

14

Who this book is for
This book is really designed for anyone looking to deploy a VPN solution to any private or enterprise network. OpenVPN can be used for point-
to-point tunnels, intra-network connections, and road warriors. The concepts covered in this book can be applied generally across more than just
OpenVPN deployments, with the exception of configuration argument specifics.

15

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these
styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles
are shown as follows: "You can specify a message digest as parameter to the --auth option."

A block of code is set as follows:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

Any command-line input or output is written as follows:

mkdir -p /etc/openvpn/movpn

Note that first character (the prompt) is used to indicate a root-shell (#) or a user shell ($).

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text
like this: "Launch the OpenVPN GUI application, select the configuration basic-udp-client and click on Connect."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

16

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader
feedback is important for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your
message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on
www.packtpub.com/authors.

17

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—
maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search
field. The required information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and
licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to
address it.

18

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter 1. Introduction to OpenVPN
The Internet in modern society is as ubiquitous as any public utility. When someone buys a home or moves into a new apartment, or a business
moves into a new space, an Internet service is the first utility on the list to be ordered, followed by power, heat, trash, and maybe (but not likely)
a land line or telephone service. You could even argue that the modern qualifier isn't even necessary. With programs such as One Laptop per
Child, coupled with efforts by the likes of Facebook and Google, so-called third-world nations have the Internet where there is no running
water, sewers, or even telephone services.

When you have such a wide-reaching service with so many individuals, at a certain point it will be necessary to secure and protect the data
transmitted on that network. With most crowds and heavy concentrations of people, there is a more nefarious element looking to take advantage
of those with less knowledge. Virtual Private Networks (VPNs) were created out of a greater need for secured communication across an
otherwise unprotected infrastructure. The original large-scale network, ARPANET, had very little (if any) protection and authentication and all
other nodes were inherently trusted. The network landscapes today are very different and even many casual, nontechnical users are aware of the
lack of security of their connections.

Government agencies have long been targets for intelligence. For thousands of years, methods and procedures have been slowly perfected and
tuned to protect sensitive information from enemies and other prying eyes. Initially, wax-sealed letters carried by trusted individuals meant you
and the receiver could trust a message had arrived safely and untampered. As time and technology have progressed, it became easier to intercept
those messages, read or alter them, and send them along their way.

World War II saw some of the greatest advances in cryptography and secure communications. From devices such as the German Enigma
machine to the Navajo Code Talkers, communicating securely between troops and command was a never-ending arms race. Today,
governments and militaries aren't the only groups with a desire for privacy. Corporations want to maintain data integrity and protection for
payment card industry (PCI) standards to protect consumers. Family members want to discuss family matters over private channels, where
the community at large isn't able to eavesdrop. Others wish to break through the national firewalls meant to oversee the populous and restrict
content deemed controversial or against party politics.

Every day, most people use a VPN or have a use for a VPN, whether they realize it at the time or not. Many different VPN technologies exist,
both from commercial vendors and as open source projects. One of the most popular pieces of open source VPN software is OpenVPN. The
goal of this book is to make you an OpenVPN master; you will learn not just the technology behind it, but the reasoning, logic, and logistics of
everything involved. While this book will mention and touch on the commercial offering from OpenVPN Technologies, Inc., Access Server, the
primary focus will be on the open source/community version of OpenVPN.

What is a VPN?
Put simply, a VPN allows an administrator to create a "local" network between multiple computers on varying network segments. In some
instances, those machines can be on the same LAN, they can be distant from each other across the vast Internet, or they can even be connected
across a multitude of connection media such as wireless uplinks, satellite, dial-up-networking, and so on. The P in VPN comes from the added
protection to make that virtual network private. Network traffic that is flowing over a VPN is often referred to as inside the (VPN) tunnel,
compared to all the other traffic that is outside the tunnel.

In the following figure, network traffic is shown as it traditionally traverses across multiple network segments and the general Internet. Here,
this traffic is relatively open to inspection and analysis. Though protected protocols such as HTTPS and SSH are less vulnerable, they are still
identifiable; if an attacker is snooping network traffic, they can still see what type of connection is made from which computer to which server.

When a VPN is used, the traffic inside the tunnel is no longer identifiable.

The traffic within a VPN can be anything you would send over a local or wide-area network: web traffic, e-mail, text, graphics, and so on.
Examples of some applications include the following:

Automated Teller Machines: ATMs may use a VPN to connect more securely to banking systems.
Open / Free Wi-Fi: With the proliferation of free or open wireless networks, everyday users can utilize a VPN to protect the entirety of
their Internet browsing.
Corporate networks: Corporations and other organizations may use a VPN to connect multiple office locations or even entire data

19

centers.
GeoIP / Location-based services: Some websites serve data based on geographic location by using GeoIP databases and other records. A
VPN can allow you to "bounce" through another machine in a location closer to the content you really want. Internet video services such
as Hulu, YouTube, and Netflix are common examples of this.
Bypassing censorship / Political freedom: Some regimes, such as North Korea or China, have extraordinarily restrictive censorship
rules. The "Great Firewall of China" is one extreme example. The lockdowns of Internet access during political uprisings such as the
"Arab Spring" attempt to contain and control reports outside the conflict. VPNs can aid in getting outside those restrictive rules to the
greater Internet.

Here is an example of the traffic within a VPN. While the VPN itself is routed across the Internet like in the preceding figure, devices along the
network path only see VPN traffic; those devices are completely unaware of what is being transmitted inside the private tunnel. Protected
protocols, such as HTTPS and SSH, will still be protected inside the tunnel from other VPN users, but will be additionally unidentifiable from
outside the tunnel. A VPN not only encrypts the traffic within, it hides and protects individual data streams from those outside the tunnel.

It should be noted that the preceding figure shows both the strengths and one of the greatest threats of VPN technologies. The VPN tunnel is
dug through routers and firewalls on both sides. Thus, all the network traffic that is flowing via the VPN tunnel is bypassing the regular network
defenses, unless special measures are taken to police the VPN traffic.

Most VPN implementations utilize some form of encryption and, additionally, authentication. The encryption of the VPN ensures that other
parties that may be monitoring traffic between systems cannot decode and further analyze otherwise sensitive data. Authentication has two
components, each in a different context.

First, there is user or system authentication that ensures those connecting to the service are authorized. This type of authentication may be in the
form of per-user certificates, or a username/password combination. Further, rules specific to a given user can be negotiated such as specific
routes, firewall rules, or other scripts and utilities. Typically, these are unique to a single instance, though even that can be configurable (when
OpenVPN is used, see --duplicate-cn).

The second component of authentication is added protection to the communication stream. In this case, a method of signing each packet sent is
established. Each system verifies the VPN packets it receives are properly signed before decrypting the payload. By authenticating packets that
are already encrypted, a system can save processing time by not even decrypting packets that do not meet the authentication rules. In the end,
this prevents a very real potential Denial of Service (DoS) attack, as well as thwarting Man in the Middle (MITM) attacks, assuming the
signing keys are kept secure!

20

Types of VPNs
There are many VPN products available on the market, both commercial and open source. Almost all of these VPN products can be separated
into the following four categories:

PPTP-protocol based VPNs
IPSec-protocol based VPNs
SSL-based VPNs
OpenVPN

Some people argue that OpenVPN is also an SSL-based VPN, as it uses an SSL or TLS-like protocol to establish a secure connection. However,
we have created a separate category for OpenVPN, as it is different from almost every other SSL-based VPN solution.

We will now go into more detail about each of the four types of VPNs:

PPTP
One of the oldest VPN protocols is the Point-to-Point Tunneling Protocol (PPTP) developed by Microsoft and Ascend in 1999. It is officially
registered as RFC2637 (see https://www.ietf.org/rfc/rfc2637.txt for the full standard). The PPTP client has been included in Windows ever since
1995 and is still included in most operating systems.

Nowadays, the PPTP protocol is considered fundamentally insecure, as the strength of the security of the connection is directly related to the
strength of the authentication mechanism chosen (for example, the password). Thus, an insecure password leads to an insecure VPN connection.
Most PPTP setups use the MS-CHAPv2 protocol for encrypting passwords, and it is this protocol which is fundamentally broken. The security
of the PPTP protocol, including the Microsoft MS-CHAPv2 extensions, has been discussed in the article available at
https://www.schneier.com/paper-pptpv2.html.

It is also possible to use X.509 certificates for securing a PPTP connection, which does lead to a fairly secure connection. However, not all
PPTP clients support EAP-TLS, which is needed to allow the use of X.509 certificates.

PPTP uses two channels, a control channel for setting up the connection and another channel for data transport. The control channel is initiated
over TCP port 1723. The data channel uses the General Routing Encapsulation (GRE) protocol, which is IP protocol 47. For comparison,
"regular" TCP/IP traffic is done using IP protocol 6 (TCP) and 17 (UDP).

PPTP clients are available on almost all operating systems, ranging from Windows to Linux and Unix derivatives to iOS and Android devices.

IPSec
The IPSec standard is the official IEEE/IETF standard for IP security. It is officially registered as RFC2411 (see
https://www.ietf.org/rfc/rfc2411.txt for the full standard). IPSec is also built into the IPv6 standard.

IPSec operates at layer 2 and 3 of the OSI model of the network stack. It introduces the concept of security policies, which makes it extremely
flexible and powerful, but also notoriously hard to configure and troubleshoot. Security policies allow an administrator to encrypt traffic
between two endpoints based on many parameters, such as the source and destination IP address, as well as the source and destination TCP or
UDP ports.

IPSec can be configured to use pre-shared keys or X.509 certificates to secure the VPN connection. Additionally, it uses either X.509
certificates, one-time passwords, or username/password protocols to authenticate the VPN connection.

There are two modes of operation in IPSec: tunneling mode and transport mode. Transport mode is used most often in combination with the
Level 2 Tunneling Protocol (L2TP). This L2TP protocol performs the user authentication as described in the preceding section. The IPSec
clients built into most operating systems usually perform IPSec+L2TP, although it is also possible to set up an IPSec-only connection. The
IPSec VPN client built into Microsoft Windows uses IPSec+L2TP by default, but it is possible to disable or bypass it. However, this involves
cryptic commands and security policy changes.

Like PPTP, IPSec also uses two channels: a control channel for setting up the connection and one for data transport. The control channel is
initiated over UDP port 500 or 4500. The data channel uses the Encapsulated Security Payload (ESP) protocol, which is IP protocol 50. For
comparison, "regular" TCP/IP traffic is done using IP protocol 6 (TCP) and 17 (UDP). The integrity of IPSec packets is ensured using Hash-
based Message Authentication Code (HMAC), which is the same method that OpenVPN uses.

One of the main disadvantages of IPSec is that many vendors have implemented extensions to the standard, which makes it hard (if not
impossible) to connect two IPSec endpoints from different vendors.

IPSec software is included in almost all operating systems, as well as firewall, router, and switch firmware.

SSL-based VPNs
The most commonly used VPNs nowadays are SSL-based VPNs, which are based on the SSL/TLS protocol. SSL-based VPNs are often called
client-less VPNs or web-based VPNs, although there are some vendors that provide separate client software, such as Cisco AnyConnect and
Microsoft SSTP. Most SSL-based VPNs use the same network protocol as is used for secure website (HTTPS), while OpenVPN uses a custom
format for encrypting and signing data traffic. This is the main reason why OpenVPN is listed as a separate VPN category.

There is no well-defined standard for SSL-based VPNs, but most use the SSL/TLS protocol to set up and secure the connection. The connection
is secured in most cases by using X.509 certificates, with one-time password or username/password protocols for authenticating the connection.
SSL-based VPNs are very similar to the connections used to secure websites (HTTPS) and the same protocol and channel (TCP and port 443) is
often used.

Even though SSL-based VPNs are often called web-based or client-less, there are quite a few vendors that use a browser plugin or ActiveX

21

https://www.ietf.org/rfc/rfc2637.txt
https://www.schneier.com/paper-pptpv2.html
https://www.ietf.org/rfc/rfc2411.txt

control to "enhance" the VPN connection. This makes the VPN noninteroperable with unsupported browsers or operating systems.

OpenVPN
OpenVPN is often called an SSL-based VPN, as it uses the SSL/TLS protocol to secure the connection. However, OpenVPN also uses HMAC
in combination with a digest (or hashing) algorithm for ensuring the integrity of the packets delivered. It can be configured to use pre-shared
keys as well as X.509 certificates. These features are not typically offered by other SSL-based VPNs.

Furthermore, OpenVPN uses a virtual network adapter (a tun or tap device) as an interface between the user-level OpenVPN software and the
operating system. In general, any operating system that has support for a tun/tap device can run OpenVPN. This currently includes Linux,
Free/Open/NetBSD, Solaris, AIX, Windows, and Mac OS, as well as iOS/Android devices. For all these platforms, client software needs to be
installed, which sets OpenVPN apart from client-less or web-based VPNs.

The OpenVPN protocol is not defined in an RFC standard, but the protocol is publicly available because OpenVPN is a piece of open source
software. The fact that it is open source actually makes OpenVPN more secure than closed-source VPNs, as the code is continually inspected by
different people. Also, there is very little chance of secret backdoors being built into OpenVPN.

OpenVPN has the notion of a control channel and a data channel, both of which are encrypted and secured differently. However, all traffic
passes over a single UDP or TCP connection. The control channel is encrypted and secured using SSL/TLS, the data channel is encrypted using
a custom encryption protocol.

The default protocol and port for OpenVPN is UDP and port 1194. Before IANA granted OpenVPN an official port assignment, older clients
(2.0-beta16 and older) defaulted to port 5000.

22

Comparison of VPNs
Each of the different VPN technologies has its own characteristics, advantages, and disadvantages. Even though this book is about OpenVPN,
there are use-cases where, for example, an IPSec-based VPN is more suitable, depending on the requirement of the users.

Advantages and disadvantages of PPTP
The main advantage of PPTP-based VPNs is that the VPN client software is built into most operating systems. Also, the startup time for
configuring and initializing a PPTP VPN connection is quite short.

Disadvantages of PPTP-based VPNs are the lack of security and the lack of configuration options on both the client and server side.
Furthermore, the EAP-TLS extension that enables the use of X.509 certificates is fully supported only on Microsoft Windows, although a patch
exists for the open source pppd package to enable EAP-TLS support. The pppd package is included in almost every Linux distribution. Also,
if one must resort to using EAP-TLS, then the ease of setting up a PPTP VPN is greatly diminished. This is because EAP-TLS requires setting
up a public key infrastructure, just like IPSec and OpenVPN.

Another major disadvantage of PPTP is the use of the GRE protocol, which does not integrate well with NAT'ing devices.

Advantages and disadvantages of IPSec
Advantages of the IPSec protocol are its strong security, good support from different vendors and platforms, including xDSL and Wi-Fi routers,
as well as the ability to use fine-grained security policies to control the flow of traffic.

The downsides of IPSec are that it is notoriously difficult to configure and troubleshoot, different IPSec implementations from different vendors
do not play nicely together, and IPSec does not integrate well with NAT'ted networks. Most notably, it is not recommended, and sometimes not
even possible, to run an IPSec server that is on a NAT'ted network.

Advantages and disadvantages of SSL-based VPNs
SSL-based VPNs, or web-based VPNs, have the advantage of there being no or very little client software involved. This makes installation and
initialization on the client side very easy.

The disadvantage of a web-based VPN is that it is often not a full-blown VPN and allows access to a single server or set of servers. Also, it is
harder to share local data with the remote site or server.

Advantages and disadvantages of OpenVPN
Advantages of OpenVPN are its ease of deployment, its configurability, and the ability to deploy OpenVPN in restricted networks, including
NAT'ted networks. Also, OpenVPN includes security features that are as strong as IPSec-based solutions, including hardware token security and
support for different user authentication mechanisms.

Disadvantages of OpenVPN are its current lack of scalability and its dependence on the installation of client-side software. Another
disadvantage is the lack of a GUI for configuration and management. Notably the tap interface driver for Microsoft Windows has often caused
deployment issues when a new version of Windows is released.

History of OpenVPN
OpenVPN was originally written by James Yonan with an initial release, Version 0.90, in 2001 under the GPL. The initial release allowed users
to create a simple point-to-point VPN over UDP using the Blowfish cipher and, optionally, the SHA1 HMAC signature. With Version 1.0, TLS-
based authentication and key exchange was added along with a man page.

Improvements for OpenVPN 1.x included better TLS support, replay protection, and porting to other operating systems. Some ports included
OpenBSD, Mac OS, and better packaging for RedHat. Prior to Version 1.1.1, the tun device had to be configured manually outside OpenVPN.
This release added the --ifconfig option, which automatically configured the tun device, greatly simplifying the overall configuration.

The 1.x series was relatively crude compared to the current OpenVPN Version, 2.3.8, as would be expected of a new project. One primary
hurdle was the integration of OpenSSL. As OpenSSL was notorious for its poor or completely absent documentation, the developer had to go
directly to the source code to integrate the project with OpenVPN. License changes were also required early on to allow the more-specific GNU
Public Licensed code to link against the non-GPL OpenSSL library. Those issues were worked out and feature additions were prominently
present in the change log throughout the 1.x series.

Some notable updates in the 1.x series include:

2001.05.13 (0.90): This was the initial release
2002.03.23 (1.0): This allowed TLS authentication and key exchange
2002.04.09 (1.1.0): This had a OpenBSD port and OpenSSL linking
2002.04.22 (1.1.1): This had the --ifconfig option
2002.05.22 (1.2.0): This had configuration files (instead of just command-line options, pthread support, and a Solaris port)
2002.07.10 (1.3.0): This had better FreeBSD support and logging improvements
2002.10.23 (1.3.2): This had initial IPv6 support and more FreeBSD improvements
2003.05.07 (1.4.0): This included MTU features
2003.07.24 (1.5-beta1): This had TCP support
2003.11.03 (1.5-beta13): This had support for configuration parameters --http-proxy, --redirect-gateway, and --crl-
verify

2004.02.01 (1.6-beta5): This had the SOCKS5 proxy and IPv6 on FreeBSD
2004.05.09 (1.6.0): This is the final 1.x release

23

OpenVPN 2.0 has seen great advances from the 1.x releases. With 2.0, effort was put in to provide multiclient server instances, improved
threading, and a better Windows tun/tap adapter. Development for 2.0 overlapped 1.x for over a year, with initial test releases for 2.0 dating
back to November 2003 and the final 1.x release not arriving until May 9, 2004. When it was finally released, 2.0 saw 29 test releases, 20 beta
releases, and 21 release candidates over a year and a half of effort (November 2003 to April 2005).

Some key features of the 2.0 release, in comparison to 1.6.0, are as follows:

It allows a server instance to accept connections from multiple clients
It enables the server-side config option push to clients (--push/--pull)
It allows username/password authentication
It supports chroot and the downgrading of daemon privileges (--user/--group/--chroot)
It supports client connect scripts
It has a management interface
The inception of Easy-RSA

Development from 2.0 to 2.0.9 mostly consisted of bug fixes and corrections for a few security vulnerabilities. Apart from some sporadic
contributions from a few others, OpenVPN was primarily developed by James up to and into the 2.1 release. 2.0.9 remained a stagnant official
release from October 2006 until Version 2.1.0 in December 2009.

OpenVPN 2.1 was the first major release with a notable amount of code written by someone other than James Yonan. Alon Bar-Lev has many
significant contributions dating back to 2.1-beta3 with many patches for cryptography support and corrections. Considered the first real
community release, 2.1 saw much work in the core code base involving the management interface and network addressing. Some notable
release notes include the following:

2005.11.12 (2.1-beta7): The ca, cert, key, and dh files could be specified inline in the configuration file.
2006.01.03 (2.1-beta8): The --topology subnet was added.
2006.02.16 (2.1-beta9): Port sharing was allowed so that OpenVPN and HTTPS could share a port.
2008.09.10 (2.1_rc10): Warn if the common 192.168.0.0/24 or 192.168.1.0/24 subnets are used. --server-bridge was added for
DHCP proxy support.
2010.08.09 (2.1.2): It had a Python-based Windows build system, with improved handling of AUTH_FAIL for the management
interface.
2010.11.09 (2.1.4): This was the final release of the 2.1 series.

In August 2008, there had been no official release since 2.0.9. Additionally, there was very little community support apart from the mailing list.
There was interest in building a community and Krzee King and Eric Crist pushed to build one around the project. Initially, all effort was
directed at supporting users.

As the group of individuals supporting OpenVPN grew, it attracted folks who could write good code. Contact was made with OpenVPN Inc.,
with the goal to not only provide better levels of support for OpenVPN, but to also build and extend the software James had written, but the
efforts of the cooperation were rebuffed.

Talks began on Internet Relay Chat (IRC) which is a communication tool preferred by many developers for porting the project so that
advancements could be made. Development began; some members managed IRC and helped on the mailing lists. Others built a source
repository, wiki, and a web forum. The average usage was roughly 2 posts per day on the forum and about 8 users on IRC.

In early 2009, OpenVPN technologies hired Samuli Seppänen to help build and interact with the open source community. Samuli has been
instrumental in forging a solid relationship between the corporation and the enthusiasts and volunteers. A strong community has been built
around the project. Today, the forum averages 16 posts per day (more than 35,000 messages in total), and IRC fluctuates between 150 and 250
users on any given day.

OpenVPN 2.2 was the first release after the switch to a more community-oriented development model. After hashing out a development model
and a direction, the community wanted to move with the project and work started right away.

Initially, for OpenVPN 2.2, James was still in overall control of what was merged into the main source tree, as the tree was still managed using
subversion at OpenVPN Technologies. Later, the source tree was migrated to GIT and the roles reversed, where James' changes were accepted
and merged into the open source project tree.

The notable changes in OpenVPN 2.2 were:

SOCKS plaintext authentication
Improved platform support for --topology subnet
The tap mode on Solaris
Windows build compiled with ENABLE_PASSWORD_SAVE enabled
Windows IPv6 tun support
Client certificates could be omitted with behavior similar to a web browser (--client-cert-not-required)
Client certificates could now indicate a separate username instead of using the certificate common name (--x509-username-field)
Support was removed for Windows 2000 and earlier
2011.04.26 Version 2.2.0 was released
2011.07.06 Version 2.2.1 was released with minor changes, mostly build/install related
2011.12.22 Version 2.2.2 was released with Windows tap driver changes

OpenVPN 2.3 is the beginning of a major turn in build structure within OpenVPN. The end goal, in a nutshell, is to create a more extensible and
plugin-friendly source. With the build for mobile platforms such as Android and iOS already requiring a ground-up rewrite, James and other
developers cleaned up older code in favor of more compact and normalized functions. Those rewrites are done in C++, as opposed to the current
C language used.

While listed in the change log of past revisions, IPv6 support, both as a payload as well as for transit in OpenVPN, did not really mature until
the 2.3 release. The vast majority of the IPv6 contributions were a result of hard work by Gert Döring.

24

Another important feature of the 2.3 release was the addition of PolarSSL support. PolarSSL is an alternative cryptographic library to OpenSSL
and OpenVPN can now be built against either library. This topic is discussed in greater detail later in this chapter.

The list of improvements and additions for the 2.3 release is vast, but the highlights are as follows (the full change log is at
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23):

Cross-platform IPv6 support (transit AND payload)
New plugin API
Support for building against PolarSSL, and ground work for other potential alternatives
Clients can now inform the server of LZO support, and the server can automatically disable LZO for that client
Workaround for local routing conflicts (--client-nat)
A new --crl-verify directory mode, files named as common names disable certificates as if they were revoked
Certificate UTF-8 support for certificate fields
Project split for various subprojects:

OpenVPN core project
tap-windows
Easy-RSA
OpenVPN build system

Kill client connections from the management interface

Version 2.3.8 was most recent release at the time of writing.

25

https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23

OpenVPN packages
There are several OpenVPN packages available on the Internet:

The open source or community version of OpenVPN
OpenVPN Access Server, the closed-source commercial offering by OpenVPN Inc.
The mobile platform versions of OpenVPN for both Android and iOS (part of the code is closed-source, as a requirement of Apple)

The open source (community) version
Open source versions of OpenVPN are made available as each release is published. The community has resources to build binary packages for
multiple platforms, including both 32-bit and 64-bit Windows clients. The currently available download options are available at
http://openvpn.net/index.php/download/community-downloads.html.

Some operating system package maintainers track development and make snapshot releases available. FreeBSD, for example, has a
security/openvpn-devel port that tracks weekly tarball snapshots from OpenVPN development. If you'd like to run the latest and greatest
bleeding-edge version of OpenVPN, look at your package maintainer first. Otherwise, you can always build directly from source.

The community version of OpenVPN can act both as a VPN server and as a VPN client. There is no separate client-only version.

The closed source (commercial) Access Server
OpenVPN Technologies, Inc. offers a commercial version of OpenVPN called Access Server. Compared to the open source project, Access
Server offers many features and deployment options that may appeal to some organizations. Access Server is a paid product, but a trial with two
license keys enabled is available from the website.

Software packages, virtual appliances, and cloud services are all available from OpenVPN Technologies, Inc. at
https://openvpn.net/index.php/access-server/overview.html.

OpenVPN Access Server includes its own OpenVPN client, OpenVPN Connect, for both Windows and Mac OS. This client software generally
works only with OpenVPN Access Server. It is also possible to use the community version of OpenVPN as a client for an OpenVPN Access
Server.

The mobile platform (mixed) OpenVPN/OpenVPN Connect
For mobile devices, such as iPhones/iPads and Android devices, OpenVPN Technologies, Inc., provides a special OpenVPN Connect Client.
OpenVPN Technologies, Inc., and James specifically put a lot of effort and legal wrangling with the likes of Google and Apple to get access to
a usable VPN API on each platform.

Due to the nature of Apple's NDA, currently, the source for OpenVPN Connect is unavailable and cannot be shared publicly. The iOS
OpenVPN Connection client can be downloaded from the Apple App Store at https://itunes.apple.com/us/app/openvpn-connect/id590379981?
mt=8.

There are Android clients written by a few developers, but the officially supported version is OpenVPN for Android, written by Arne Schwabe,
which can be found at https://play.google.com/store/apps/details?id=de.blinkt.openvpn&hl=en.

OpenVPN Connect, written by OpenVPN Technologies, Inc., is also available. You can download the Android OpenVPN Connect client at
https://play.google.com/store/apps/details?id=net.openvpn.openvpn&hl=en.

One serious advantage of OpenVPN Connect is that it supports / is supported by both the community version of OpenVPN, as well as the
closed-source OpenVPN Access Server. If you have a need to access both types of servers, OpenVPN Connect is recommended.

Other platforms
There are some hardware vendors attempting to integrate support for OpenVPN within their devices. Some offer firmware versions for the VoIP
phones that include an older version of OpenVPN. Other firmware projects, such as DD-WRT for Linksys routers, as well as other projects such
as FreeNAS, pfSense, and others, also integrate OpenVPN.

26

http://openvpn.net/index.php/download/community-downloads.html
https://openvpn.net/index.php/access-server/overview.html
https://itunes.apple.com/us/app/openvpn-connect/id590379981?mt=8
https://play.google.com/store/apps/details?id=de.blinkt.openvpn&hl=en
https://play.google.com/store/apps/details?id=net.openvpn.openvpn&hl=en

OpenVPN internals
The design of OpenVPN is not extensively documented, but most of the internals of OpenVPN can be discovered by looking at the source code.

The tun/tap driver
One of the basic building blocks of OpenVPN is the tun/tap driver. The concept of the tun/tap driver comes from the Unix/Linux world, where
it is often natively available as part of the operating system. This is a virtual network adapter that is treated by the operating system as either a
point-to-point adapter (tun-style) for IP-only traffic or as a full virtual Ethernet adapter for all types of traffic (tap-style). At the backend of this
adapter is an application, such as OpenVPN, to process the incoming and outgoing traffic. Linux, Free/Open/NetBSD, Solaris and Mac OS
include a tun kernel driver, which is capable of both tun-style and tap-style operations. Recently, a similar driver was added to AIX, which is
IBM's Unix derivative.

For Microsoft Windows, a special NDIS driver was written by James Yonan, called the TAP-WIN32 adapter. At the moment, the NDIS5 and
NDIS6 versions of the driver are available, supporting Windows XP through Windows 8.1. The development of this adapter is now officially
separated from the main OpenVPN development, but OpenVPN continues to rely heavily on it.

The flow of traffic from a user application via OpenVPN is depicted in the preceding diagram. In the diagram, the application is sending traffic
to an address that is reachable via the OpenVPN tunnel. The steps are as follows:

1. The application hands over the packet to the operating system.
2. The OS decides using normal routing rules that the packet needs to be routed via the VPN.
3. The packet is then forwarded to the kernel tun device.
4. The kernel tun device forwards the packets to the (user-space) OpenVPN process.
5. The OpenVPN process encrypts and signs the packet, fragments it if necessary, and then hands it over to the kernel again to send it to

the address of the remote VPN endpoint.
6. The kernel picks up the encrypted packet and forwards it to the remote VPN endpoint, where the same process is reversed.

It can also be seen in this diagram that the performance of OpenVPN will always be less than that of a regular network connection. For most
applications, the performance loss is minimal and/or acceptable. However, for speeds greater than 1GBps, there is a performance bottleneck,
both in terms of bandwidth and latency.

It should be noted that the performance of the Windows driver is much lower than the performance of the native tun/tap adapters found in other

27

operating systems. This is true even with the most recent NDIS6 implementation of the TAP-Win32 driver. For a single OpenVPN client, the
impact is fairly small. For a large-scale OpenVPN server that serves many clients, this can easily cause performance issues. This is one of the
main reasons that the open source community normally recommends the use of a Unix- or Linux-based host as the OpenVPN server.

The UDP and TCP modes
OpenVPN currently supports two ways to communicate between endpoints: using UDP packets or using TCP packets. UDP is a connectionless
or lossy protocol; if a packet is dropped in transit, then the network stack does not transparently correct this. TCP packets are a connection-
oriented protocol; packets are sent and delivered using a handshake protocol, ensuring the delivery of each packet to the other side.

Both modes of communication have their advantages and disadvantages. It actually depends on the type of traffic that is sent over the VPN
tunnel to determine which mode of communication is best. Using a TCP-based application over a TCP-based VPN can result in double
performance loss, especially if the underlying network connection is bad. In that case, a re-transmittance of lost packets is done for packets lost
both inside and outside the tunnel, leading to a double performance hit. This is explained nicely in the article Why TCP over TCP is a Bad Idea
at http://sites.inka.de/~W1011/devel/tcp-tcp.html.

However, it can be similarly argued that sending UDP over UDP is also not a good idea. If an application using UDP for its traffic is susceptible
to message deletion or packet reordering attacks, then an underlying encrypted TCP connection will enhance the security of such applications
even more than an underlying UDP-based VPN. If the bulk of traffic over the VPN is UDP-based then it is sometimes better to use a TCP
connection between VPN endpoints.

When choosing between UDP or TCP transport, the general rule of thumb is as follows: if UDP (mode udp) works for you, then use it; if not,
then try TCP (mode tcp-server and mode tcp-client). Some switches and routers do not forward UDP traffic correctly, which can be an issue
especially if multiple OpenVPN clients are connected to the same switch or router. Similarly, the performance of OpenVPN over TCP can be
severely affected by the choice of Internet Service Providers (ISPs): some ISPs use odd MTU sizes or packet fragmenting rules, resulting in
extremely poor performance of OpenVPN-over-TCP compared to nonencrypted TCP traffic.

The encryption protocol
It has been said that OpenVPN implements TLS over UDP. This is more or less true, but the way OpenVPN uses TLS is different from the way
a web browser uses it. Thus, when OpenVPN is run over TCP (using port 443 is a common method to duck firewalls), the traffic is
distinguishable from normal TLS traffic. A firewall that uses Deep Packet Inspection (DPI) can easily filter out OpenVPN traffic.

The main difference between OpenVPN-TLS and browser-TLS is the way packets are signed. OpenVPN offers features to protect against DoS
attacks by signing the control channel packets using a special static key (--tls-auth ta.key 0|1). Data channel packets, which are sent
over the same UDP or TCP connection, are signed completely differently and are very readily distinguished from HTTPS traffic. The OpenVPN
website (http://openvpn.net) depicts how packets are encrypted for UDP transport, which is illustrated below.

The same mechanism is used for TCP transport (http://openvpn.net/index.php/open-source/documentation/security-overview.html).

This is also the main reason why port-sharing, where OpenVPN and a secure web server share the same IP address and port number, can
actually work.

The control and data channels
OpenVPN uses two virtual channels to communicate between the client and server:

A TLS control channel to exchange configuration information and cipher material between the client and server. This channel is used
mostly when the VPN connection is started, as well as for exchanging new encryption keying material. This keying material is renewed
after a certain period (based on the --reneg-sec, --reneg-bytes, or --reneg-pkts options).
A data channel over which the encrypted payload is exchanged.

The exception to this is the older pre-shared key point-to-point mode, in which only the data channel is used.

Encryption and authentication (signing) for the control channel and the data channel are determined differently. The control channel is initiated
using a TLS-style protocol, similar to how a secure website connection is initiated. During control channel initialization, the encryption cipher
and hashing algorithm are negotiated between the client and server.

Encryption and authentication algorithms for the data channel are not negotiable, but they are set in both the client and server configuration files
for OpenVPN. The current default settings are Blowfish as the encryption cipher and SHA1 as the hashing algorithm. The ability to also
negotiate cipher and hashing algorithms for the data channel are high on the wish list of the development team, but this requires an extensive
change to the code.

28

http://sites.inka.de/~W1011/devel/tcp-tcp.html
http://openvpn.net
http://openvpn.net/index.php/open-source/documentation/security-overview.html

Ciphers and hashing algorithms
OpenVPN supports a wide range of encryption ciphers and hashing algorithms. The ciphers are used to encrypt the payload, while the HMAC
function makes use of a digest or hashing algorithm to authenticate incoming packets. As OpenVPN uses a control channel and a data channel,
there are two sets of ciphers and hashing algorithms that can be configured.

The control channel cipher and hashing algorithms are normally negotiated at startup. The list of available combinations of ciphers and hashing
algorithms can be displayed using the following command:

$ openvpn --show-tls

The available TLS Ciphers listed in order of preference:

TLS-ECDHE-RSA-WITH-AES-256-GCM-SHA384

TLS-ECDHE-ECDSA-WITH-AES-256-GCM-SHA384

TLS-ECDHE-RSA-WITH-AES-256-CBC-SHA384

TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA384

TLS-ECDHE-RSA-WITH-AES-256-CBC-SHA

TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA

TLS-DHE-DSS-WITH-AES-256-GCM-SHA384

TLS-DHE-RSA-WITH-AES-256-GCM-SHA384

TLS-DHE-RSA-WITH-AES-256-CBC-SHA256

TLS-DHE-DSS-WITH-AES-256-CBC-SHA256

TLS-DHE-RSA-WITH-AES-256-CBC-SHA

TLS-DHE-DSS-WITH-AES-256-CBC-SHA

TLS-DHE-RSA-WITH-CAMELLIA-256-CBC-SHA

TLS-DHE-DSS-WITH-CAMELLIA-256-CBC-SHA

TLS-ECDH-RSA-WITH-AES-256-GCM-SHA384

[…]

This output was retrieved on a CentOS 6 host using the OpenSSL 1.0.1e library.

The available combinations depend largely on the exact version of the SSL library used. You can specify a list of tls-ciphers in the
OpenVPN configuration file in a manner that is very similar to configuring the Apache mod_ssl module:

tls-cipher TLS-ECDHE-RSA-WITH-AES-256-GCM-SHA384:TLS-ECDHE-ECDSA-

 WITH-AES-256-CBC-SHA384

:TLS-ECDH-RSA-WITH-AES-256-GCM-

 SHA384

List all ciphers on a single line; the preceding output was modified for readability.

For the data channel, the encryption cipher and hashing algorithm are controlled using the --cipher and --auth options. If the cipher and
authentication algorithm are not specified, then the default values of bf-cbc and sha1 are used, respectively.

To retrieve the list of available encryption ciphers, use the following command:

$ openvpn --show-ciphers

The following ciphers and cipher modes are available for use with OpenVPN. Each cipher shown here may be used as a parameter to the --
cipher option. The default key size is shown regardless of, whether or not it can be changed with the --keysize directive. Using a CBC
mode is recommended. In a static key mode, only a CBC mode is allowed:

[…]

BF-CBC 128 bit default key (variable)

BF-CFB 128 bit default key (variable) (TLS client/server mode)

BF-OFB 128 bit default key (variable) (TLS client/server mode)

[…]

AES-128-CBC 128 bit default key (fixed)

AES-128-OFB 128 bit default key (fixed) (TLS client/server mode)

AES-128-CFB 128 bit default key (fixed) (TLS client/server mode)

AES-192-CBC 192 bit default key (fixed)

AES-192-OFB 192 bit default key (fixed) (TLS client/server mode)

AES-192-CFB 192 bit default key (fixed) (TLS client/server mode)

AES-256-CBC 256 bit default key (fixed)

AES-256-OFB 256 bit default key (fixed) (TLS client/server mode)

AES-256-CFB 256 bit default key (fixed) (TLS client/server mode)

[…]

In this output, only the most commonly-used ciphers are shown. The list of available ciphers again depends on the exact version of the
underlying crypto library. However, in most cases, the Blowfish (BF-*) and AES (AES-*) ciphers should be available.

Similarly, for the authentication (HMAC-signing) algorithms, we use the following command to list all the available options:

$ openvpn --show-digests

The following message digests are available for use with OpenVPN. A message digest is used in conjunction with the HMAC function to
authenticate received packets. You can specify a message digest as a parameter to the --auth option:

29

[…]

SHA 160 bit digest size

SHA1 160 bit digest size

[…]

ecdsa-with-SHA1 160 bit digest size

[…]

SHA256 256 bit digest size

SHA384 384 bit digest size

SHA512 512 bit digest size

SHA224 224 bit digest size

In this output, only the most commonly-used digests or hashing algorithms are shown. The list of available digests depends on the exact version
of the underlying crypto library. In most cases, the SHA-1 and SHA-2 family of hashing algorithms should be available.

OpenSSL versus PolarSSL
Starting with OpenVPN 2.3, support for a new SSL library has been added. The PolarSSL library (http://polarssl.org) can be compiled in instead
of the default OpenSSL library. The main reason for adding a second library was to ensure the independence of the underlying encryption
libraries and to ensure that no copyright issues would arise, as the OpenSSL copyright license is different from the one that OpenVPN uses.

30

http://polarssl.org

Summary
In this chapter, we started out by explaining what a VPN is. We then discussed some examples of different types of VPN protocols, including
PPTP, IPSec, and OpenVPN. After a brief overview of the history of OpenVPN, we proceeded to dive deeper into the techniques used in
OpenVPN. These techniques include the tun/tap adapter and the encryption and packet signing algorithms used.

After this introduction to VPNs and OpenVPN itself, it is now time to learn more about OpenVPN. In the next chapter, we will start with the
most basic method of using OpenVPN, the point-to-point mode using pre-shared keys. As we progress throughout this book, you will gain a
more in-depth knowledge of how to use OpenVPN in a wide variety of configurations.

31

Chapter 2. Point-to-point Mode
At first, point-to-point mode using pre-shared keys was the only available option when using OpenVPN. Nowadays, there are multiple ways to
use OpenVPN, but point-to-point mode still has its uses. The term point-to-point mode using pre-shared keys is often abbreviated to pre-shared
keys.

In point-to-point mode, OpenVPN is configured using pre-shared secret keys for predefined endpoints, and only a single endpoint can connect
to a server instance at a time. The term server can be considered misleading, as both endpoints are more or less equal when it comes to
functionality. The endpoint that initiates the connection is considered the client, the other endpoint is considered as the server.

We will start off with a demonstration of a very basic example. After that, we will discuss more features that OpenVPN provides. We will look
at the following topics:

TCP protocol and different ports
TAP mode
OpenVPN secret keys
Routing
Complete setup, including IPv6
An IP-less setup
Three-way routing
Bridged TAP adapters on both ends
Combining point-to-point mode with certificates

Pros and cons of the key mode
The main use case for using pre-shared key mode is to connect two remote networks, for example, a main office and a remote office of a small
company. As soon as more than three users or endpoints are required, it is far easier to use client/server mode, as described in Chapter 4,
Client/Server Mode with tun Devices. An example of how to connect three sites together using pre-shared keys is given later in this chapter, and
it will become clear why pre-shared key mode does not scale well beyond three sites or users.

The main advantages of using pre-shared key mode are as follows:

It is very easy to set up
There is no need for public key infrastructure (PKI) or X.509 certificates
Can run on limited hardware, such as Linux-based switches or routers

The disadvantages of using pre-shared key mode are:

As the name point-to-point indicates, only two endpoints can be used by a single connection. Therefore, this mode does not scale well.
Some GUI wrappers for OpenVPN (for example, GNOME NetworkManager) do not support pre-shared keys. The same applies to the
Android and iOS clients.
The secret key must be copied to the remote endpoint using a secure channel, for example, using SSH. This can sometimes be a security
risk.
It is not possible to encrypt the secret key using a passphrase, like is possible when using X.509 public/private keys.
It is considered slightly less secure, as the security depends entirely on the security and strength of the pre-shared secret key. Also, there
is no perfect forwarding secrecy (PFS) in this mode. Without PFS, an attacker may record all encrypted VPN traffic. If the attacker
manages to break the encryption at some point, then all recorded VPN traffic can be decrypted. With PFS, it is not possible to decrypt
old data.

It is important to realize that OpenVPN actually operates differently when using pre-shared keys compared to using certificates and a
client/server setup. The code paths that are followed within OpenVPN are actually quite different, for example, no control channel negotiation is
needed. The average end user will not see these differences, but it is important to know these differences when troubleshooting is needed for an
OpenVPN connection. Also, when reading an OpenVPN log file with verbosity set to high (that is, anything higher than 5), the output of a pre-
shared key connection will look quite different compared to the output of a certificate-based connection.

Unless stated otherwise, the examples in this chapter are all based on endpoints running CentOS 6 64bit. The version of the OpenVPN software
installed is v2.3.2, taken from the CentOS-EPEL repository.

The first example
Let's look at our very first example:

1. The simplest and shortest example for connecting two computers using OpenVPN is to start the first endpoint in the listening mode,
using fixed IP addresses and a tun style network:

[root@server] # openvpn \

 --ifconfig 10.200.0.1 10.200.0.2 \

 --dev tun

2. Next, launch the OpenVPN client:

[root@client] # openvpn \

 --ifconfig 10.200.0.2 10.200.0.1 \

 --dev tun \

 --remote openvpnserver.example.com

3. In a different terminal window, list the network device:

[root@client] # ip addr show tun0

32

7: tun0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500

 qdisc pfifo_fast state UNKNOWN group default

 qlen 100 link/none

 inet 10.200.0.2 peer 10.200.0.1/32 scope global tun0

 valid_lft forever preferred_lft forever

The following screenshots shows how a connection is established:

4. We can now ping the OpenVPN endpoints from either end, provided that the firewall and SELinux rules allow this.

The connection log shows some interesting details. The OpenVPN version on the client-side is 2.3.2 x86_64-redhat-linux-gnu. This
verifies that we are running v2.3.2 on a 64 bit version of a RedHat Linux derivative.

The connection log shows a warning:

Mon Sep 8 18:27:29 2014 ******* WARNING *******: all encryption and authentication features

disabled -- all data will be tunnelled as cleartext

This warning is printed as no secret key was specified to encrypt the connection with, which makes this example not very secure.

The Linux device tun0 is opened for the connection. We specified --dev tun, which tells OpenVPN to open the first available tun
adapter. If a second OpenVPN connection is now started the next instance will use tun1.
The Linux iproute2 /sbin/ip command is used to set up the tun0 network adapter. The IP address specified is assigned, along
with a default maximum transfer unit (MTU) of 1500 bytes.
By default, OpenVPN will use UDP port 1194 to establish a connection. If the TCP protocol is required, then the command-line
arguments on both ends are slightly different (This is shown in the following section).
From the timestamps printed at the beginning of each line, it can be seen that it takes 10 seconds to establish the initial connection.

If the following message is printed, then the connection was completed successfully. We will see in later examples, however, that this does not
necessarily mean that the VPN is functioning properly.

Mon Sep 8 18:27:40 2014 Initialization Sequence Completed

33

TCP protocol and different ports
The default protocol that OpenVPN uses is UDP, as it is generally more suitable for VPN connections. However, if the TCP protocol is
required, then the preceding example needs to be modified only slightly:

On the listening end, start the OpenVPN server instance:

[root@server] # openvpn \

 --ifconfig 10.200.0.1 10.200.0.2 \

 --dev tun \

 --proto tcp-server

On the client side, the code is as follows:

[root@client] # openvpn \

 --ifconfig 10.200.0.2 10.200.0.1 \

 --dev tun \

 --proto tcp-client \

 --remote openvpnserver.example.com

OpenVPN will now connect over TCP port 1194. It is also possible to override the port number using the --port parameter, for example, --
port 5000.

The TAP mode
If non-TCP/IP traffic needs to be passed over the VPN tunnel (for example, legacy AppleTalk or IPX traffic), then a tap device is required. The
tap device provides an interface to pass full Ethernet frames over the VPN tunnel. The overhead when passing full Ethernet frames is negligible.
The IP assignment for a tap device is different from a tun device, as a tap device acts as a regular network adapter, which needs to be assigned a
single IP address and a netmask.

The previous example is now modified. On the listening end, start the OpenVPN server process:

[root@server] # openvpn \

 --ifconfig 10.200.0.1 255.255.255.0 \

 --dev tap

On the client side, the code is as follows:

[root@client] # openvpn \

 --ifconfig 10.200.0.2 255.255.255.0 \

 --dev tap \

 --remote openvpnserver.example.com

Again, we list the network device configuration:

[root@client] # ip addr show tap0

8: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

 qdisc pfifo_fast state UNKNOWN group default qlen 100

 link/ether 6e:ea:0e:47:a3:d8 brd ff:ff:ff:ff:ff:ff

 inet 10.200.0.2/24 brd 10.200.0.255 scope global tap0

 valid_lft forever preferred_lft forever

 inet6 fe80::6cea:eff:fe47:a3d8/64 scope link

 valid_lft forever preferred_lft forever

Compare it to the configuration from the very first example.

The topology subnet
OpenVPN 2.1 and later support a new topology, a topology subnet for assigning IP addresses in tun-style networks, which is very similar to the
IP addresses used in tap-style networks. When using --topology subnet, a single IP address and netmask are assigned to the tun
interface, with no peer address specified.

While it does not make a lot of sense to use this topology mode for a dedicated point-to-point link, it is possible to use this topology option to
make the tun style point-to-point setup almost exactly the same as the corresponding tap style setup. To use this new topology mode, use the
setup described next.

On the listening end, start:

[root@server] # openvpn \

 --ifconfig 10.200.0.1 255.255.255.0 \

 --dev tun \

 --topology subnet

On the client side, the code is as follows:

[root@client] # openvpn \

 --ifconfig 10.200.0.2 255.255.255.0 \

 --dev tun \

34

 --topology subnet \

 --remote openvpnserver.example.com

The --ifconfig line is now the same as for the tap example. The only other change is the addition of --topology subnet on both ends.

The cleartext tunnel
The previous example does not use any encryption ciphers or authentication keys; hence, you get the following warning:

Mon Sep 8 18:27:29 2014 ******* WARNING *******: all encryption and authentication features

disabled -- all data will be tunnelled as cleartext

However, a cleartext tunnel does have its uses. In a trusted environment where security is handled at a different level (for example, using a
dedicated fiber optic cable), a cleartext tunnel offers better performance over an encrypted tunnel, and it is easier to monitor the flow of traffic
over the tunnel.

Also, if you know beforehand that all traffic that will pass over the tunnel is encrypted itself (for example, all traffic is strictly HTTPS), then a
cleartext tunnel can be used to avoid double encryption, which can sometimes cause a performance degradation. Especially when running
OpenVPN on small or embedded hardware (for example, a Raspberry Pi or even some Arduino boards), encryption introduces a high penalty on
performance.

A cleartext tunnel can be set up using the examples given in the previous section. If no secret key is specified, then encryption and
authentication (HMAC signing) is automatically disabled. It is also possible to explicitly disable them:

On the listening end, start:

[root@server] # openvpn \

 --ifconfig 10.200.0.1 10.200.0.2 \

 --dev tun \

 --cipher none --auth none

On the client side, the code is as follows:

[root@client] # openvpn \

 --ifconfig 10.200.0.2 10.200.0.1 \

 --dev tun \

 --cipher none --auth none \

 --remote openvpnserver.example.com

After the connection is established, we can verify that the contents are indeed sent in cleartext using the tcpdump command (or equivalent, for
example, Wireshark):

1. Start the connection.
2. Start tcpdump and listen on the regular network interface, not the tunnel interface itself, and filter out the OpenVPN packets (UDP

port 1194) using the following command:

[root@server] # tcpdump -l -w - eth0 udp port 1194 | strings

3. Now, send some text across the tunnel using, for example, nc (netcat):
On the Server side:

$ nc -l -p 31000

On the Client side:

$ nc 10.200.0.1 31000

hello from openvpn client

goodbye

4. The tcpdump output should now show something like this:

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes

V~hello from openvpn client

5goodbye

The characters shown in the form of text messages are artifacts from the OpenVPN packet encapsulation.

35

OpenVPN secret keys
To secure the OpenVPN connection, a secret key is needed. First, we will generate such a key. Then, it needs to be copied to the remote
endpoint using a secure channel (example SCP:

$ openvpn --genkey --secret secret.key

Note that it is not necessary to run this command as root (hence the prompt $). The resulting secret key file has the following format:

#

2048 bit OpenVPN static key

#

-----BEGIN OpenVPN Static key V1-----

1393ae687606c1f7d465d70227bf63e8

8963e9d1401450002d073d6eab1bffde

b06d1a33cc5c45d4a667016339e921d3

3ac36b1a949eb52e9217e41e4b035a7b

987ddfa9d6766d3b5e4c952dc27f518d

12ccff6b2f0966284382ddc0f62b824a

f576f0982beec9d6a4728d0788499a75

0fd7055ef681404fd463d9862d3a40a9

31fca7d87997c70c07b8303a1b85f1ff

76aa7790e7c341353d2b4ea5049b11a2

51346e7dd39fc1f1e53ae57c46cf60c8

24db00a871262fee78050a9df6a57322

0bb0d980b6cf1be90a2f304f99fb9cde

7cdf72d20e7dee555c7c99950aa4d8e6

86a020c3a63125fb99d56181ff4ca20c

d6711eab15a4d6faf706f2601eb6 61b7

-----END OpenVPN Static key V1-----

After publishing the key here, it is no longer secret.

The openvpn --genkey command generates a 2048 bit key, or 256 bytes of random data. Those 256 bytes are listed in hexadecimal format
in the secret.key file, but not all 256 bytes are currently used (as we will see later on).

The secret key is used by OpenVPN for both encrypting and authenticating (signing) each packet. The default encryption cipher is the Blowfish
cipher (BF-CBC) and the default HMAC algorithm is SHA1. The Blowfish cipher used 128 bit encryption, whereas the key used for the SHA1
algorithm is 160 bits.

If OpenVPN is started with increased debugging output (--verb 7 or higher), the keys used are printed upon startup:

On the listening end (server), start the OpenVPN daemon:

[root@server] # openvpn \

 --ifconfig 10.200.0.1 10.200.0.2 \

 --dev tun \

 --secret secret.key \

 --verb 7

On the client side, the command is as follows:

[root@client] # openvpn \

 --ifconfig 10.200.0.2 10.200.0.1 \

 --dev tun \

 --secret secret.key \

 --remote openvpnserver.example.com

The server-side log output will contain lines of the form:

Static Encrypt: Cipher 'BF-CBC' initialized with 128 bit key

Static Encrypt: CIPHER KEY: 1393ae68 7606c1f7 d465d702 27bf63e8

Static Encrypt: CIPHER block_size=8 iv_size=8

Static Encrypt: Using 160 bit message hash 'SHA1' for

 HMAC authentication

Static Encrypt: HMAC KEY: 987ddfa9 d6766d3b 5e4c952d c27f518d 12ccff6b

Static Encrypt: HMAC size=20 block_size=20

Static Decrypt: Cipher 'BF-CBC' initialized with 128 bit key

Static Decrypt: CIPHER KEY: 1393ae68 7606c1f7 d465d702 27bf63e8

Static Decrypt: CIPHER block_size=8 iv_size=8

Static Decrypt: Using 160 bit message hash 'SHA1' for

 HMAC authentication

Static Decrypt: HMAC KEY: 987ddfa9 d6766d3b 5e4c952d c27f518d 12ccff6b

Static Decrypt: HMAC size=20 block_size=20

The BF-CBC cipher key is 1393 ae68 7606 c1f7 d465 d702 27bf 63e8, which is exactly the first line of the OpenVPN secret key

36

file.

The SHA1 HMAC key is 987d dfa9 d676 6d3b 5e4c 952d c27f 518d 12cc ff6b, which can also be found in the secret key
file starting at the fifth line.

Note that the same keys are used for encrypting and decrypting the data, as well as for authenticating the data. In the next section, we will see
how we can use different keys for encrypting and decrypting and authentication.

Using multiple keys
OpenVPN supports the use of directional keys, that is, different keys are used for incoming versus outgoing data. This further enhances
security. By adding a direction flag to the --secret parameter, we can specify that different keys are to be used. The direction flag needs to
be set to 0 on one end, and to 1 on the other end:

On the listening end (server), start:

[root@server] # openvpn \

 --ifconfig 10.200.0.1 10.200.0.2 \

 --dev tun \

 --secret secret.key 0\

 --verb 7

On the client side, the code is as follows:

[root@client] # openvpn \

 --ifconfig 10.200.0.2 10.200.0.1 \

 --dev tun \

 --secret secret.key 1\

 --remote openvpnserver.example.com \

 --verb 7

The server-side log output will now contain lines of the form:

 Static Encrypt: CIPHER KEY: 1393ae68 7606c1f7 d465d702 27bf63e8

 Static Encrypt: HMAC KEY: 987ddfa9 d6766d3b 5e4c952d c27f518d

 12ccff6b

 Static Decrypt: CIPHER KEY: 31fca7d8 7997c70c 07b8303a 1b85f1ff

 Static Decrypt: HMAC KEY: 0bb0d980 b6cf1be9 0a2f304f 99fb9cde

 7cdf72d2

The encryption CIPHER and HMAC keys are now clearly different from the decryption CIPHER and HMAC keys. Furthermore, each of these
keys can be found in the OpenVPN secret.key file:

Encryption CIPHER KEY starts at 1 line, 128 bits or 16 bytes long
Encryption HMAC KEY starts at 5 line, 160 bits or 20 bytes long
Decryption CIPHER KEY starts at 9 line, 128 bits or 16 bytes long
Decryption HMAC KEY starts at 13 line, 160 bits or 20 bytes long

Also, the log output on the client side shows that the keys are reversed:

Static Encrypt: CIPHER KEY: 31fca7d8 7997c70c 07b8303a 1b85f1ff

Static Encrypt: HMAC KEY: 0bb0d980 b6cf1be9 0a2f304f 99fb9cde

 7cdf72d2

Static Decrypt: CIPHER KEY: 1393ae68 7606c1f7 d465d702 27bf63e8

Static Decrypt: HMAC KEY: 987ddfa9 d6766d3b 5e4c952d c27f518d

 12ccff6b

This is necessary for the VPN tunnel to function, as the keys that are needed on the server side to encrypt the data are needed on the client side
to decrypt the data and vice versa.

Using different encryption and authentication algorithms
OpenVPN supports many different encryption and authentication (HMAC signing) algorithms. The size of the keys used in each encryption
cipher and HMAC algorithm varies, with a current maximum of 256 bits for the ciphers (for example, AES256) and 512 bits for the HMAC key
(for example, SHA512). The OpenVPN static key is 2048 bits long, which is large enough for a 512 bit cipher and a 512 bit HMAC key.

If we specify both AES256 as encryption cipher and SHA512 as an authentication algorithm, then we see that the keys used grow in size:

On the listening end (server), start:

[root@server] # openvpn \

 --ifconfig 10.200.0.1 10.200.0.2 \

 --dev tun \

 --secret secret.key 0\

 --cipher AES256 --auth SHA512 \

 --verb 7

37

On the client side, the code is as follows:

[root@client] # openvpn \

 --ifconfig 10.200.0.2 10.200.0.1 \

 --dev tun \

 --secret secret.key 1\

 --cipher AES256 --auth SHA512 \

 --remote openvpnserver.example.com \

 --verb 7

The server-side log output now contains the following lines:

Static Encrypt: Cipher 'AES-256-CBC' initialized with 256 bit key

Static Encrypt: CIPHER KEY: 1393ae68 7606c1f7 d465d702 27bf63e8

 8963e9d1 40145000 2d073d6e ab1bffde

Static Encrypt: CIPHER block_size=16 iv_size=16

Static Encrypt: Using 512 bit message hash 'SHA512' for

 HMAC authentication

Static Encrypt: HMAC KEY: 987ddfa9 d6766d3b 5e4c952d c27f518d

 12ccff6b 2f096628 4382ddc0 f62b824a

 f576f098 2beec9d6 a4728d07 88499a75

 0fd7055e f681404f d463d986 2d3a40a9

Static Encrypt: HMAC size=64 block_size=64

Static Decrypt: Cipher 'AES-256-CBC' initialized with 256 bit key

Static Decrypt: CIPHER KEY: 31fca7d8 7997c70c 07b8303a 1b85f1ff

 76aa7790 e7c34135 3d2b4ea5 049b11a2

Static Decrypt: CIPHER block_size=16 iv_size=16

Static Decrypt: Using 512 bit message hash 'SHA512' for

 HMAC authentication

Static Decrypt: HMAC KEY: 0bb0d980 b6cf1be9 0a2f304f 99fb9cde

 7cdf72d2 0e7dee55 5c7c9995 0aa4d8e6

 86a020c3 a63125fb 99d56181 ff4ca20c

 d6711eab 15a4d6fa f706f260 1eb661b7

This log can be matched against the secret.key file:

The encryption CIPHER KEY now matches the first 2 lines of the file
The encryption HMAC KEY now matches lines 5-8 of the file

It can be matched similarly for the decryption keys.

Note

The VPN tunnel is functioning just as before, but now with stronger encryption and authentication in place. If even stronger ciphers or HMAC
algorithms are introduced in the future, the OpenVPN static key format will have to be updated.

38

Routing
As stated before, the main use case for point-to-point style networks is to connect two remote networks over a secure tunnel. In the previous
example, the secure tunnel was established, but no network routes were added.

For the next example, consider the following network layout:

The client-side network 192.168.4.0/24 (with netmask 255.255.255.0) needs to be routed over the VPN tunnel to the server.

On the listening end (server), we start:

[root@server] # openvpn \

 --ifconfig 10.200.0.1 10.200.0.2 \

 --dev tun \

 --secret secret.key 0\

 --route 192.168.4.0 255.255.255.0 \

 --daemon --log /var/log/movpn-02-server.log

On the client side, the code is as follows:

[root@client] # openvpn \

 --ifconfig 10.200.0.2 10.200.0.1 \

 --dev tun \

 --secret secret.key 1\

 --remote openvpnserver.example.com \

 --daemon --log /var/log/movpn-02-client.log

On the server side, a route statement was added to tell OpenVPN that the network 192.168.4.0/24 is found at the other end of the tunnel.
OpenVPN itself will do very little with it, but it will issue the appropriate system /sbin/route or /sbin/ip route command to
configure the system routing tables. Instead of using the OpenVPN --route statement, we can also use the following command:

[root@server] # route add -net 192.168.4.0/24 gw 10.200.0.2

After the VPN connection has been established, we can alternatively use the iproute2 command:

[root@server] # ip route add 192.168.4.0/24 via 10.200.0.2

The second line of statements added in this example instructs OpenVPN to daemonize itself (that is, run silently in the background) and to log
all messages to the file /var/log/movpn-02-server.log.

Similarly, the same daemon+log statement is added on the client side.

Note

The --log statement truncates the log file each time OpenVPN starts. If you want to append to the previous log file, use the following
command:

--log-append /var/log/movpn-02-server.log

At this point, the example is not yet fully functional. If we ping a host on the client-side LAN from the VPN server, then we will not receive any
response. This has little to do with OpenVPN itself, but mostly with TCP/IP routing. Most of the questions asked on the OpenVPN-users
mailing list and OpenVPN internet forum are actually routing questions.

The reason that no response is received from the client-side LAN is two-fold:

IP Forwarding or routing needs to be enabled on the OpenVPN client. For each operating system, this is achieved in a different manner.
On Linux, it is usually sufficient to add or change a line to the file /etc/sysctl.cnf and reboot. The following line needs to be
altered:

net.ipv4.ip_forward = 1

39

It is possible to avoid a reboot by issuing the following command:

sysctl -p

We also need to make sure that there is a route back to the OpenVPN server on the client LAN. This can be done by adding a route to
the LAN gateway, or by adding a static route to each of the machines on the client LAN. In this example, we add a route on a Linux
machine that is attached to the client-side LAN:

route add -net 10.200.0.0/24 gw 192.168.4.100

Here, 192.168.4.100 is the LAN IP address of the OpenVPN client.

Note

Routes added this way are not persistent and will disappear after a reboot. Adding routes in a persistent manner is distribution-dependent.

Now, the example is functioning as expected. From the OpenVPN server, we can ping the LAN IPs of machines on the client-side LAN and
vice versa:

$ ping -c 2 192.168.4.100

PING 192.168.4.100 (192.168.4.100) 56(84) bytes of data.

64 bytes from 192.168.4.100: icmp_seq=1 ttl=64 time=5.97 ms

64 bytes from 192.168.4.100: icmp_seq=2 ttl=64 time=4.22 ms

$ ping -c 2 192.168.4.10

PING 192.168.4.10 (192.168.4.10) 56(84) bytes of data.

64 bytes from 192.168.4.10: icmp_seq=1 ttl=63 time=7.37 ms

64 bytes from 192.168.4.10: icmp_seq=2 ttl=63 time=6.09 ms

Configuration files versus the command line
As you can see from the previous example, the command-line arguments to OpenVPN can quickly become lengthy and complex. It is also
possible (and advisable) to use configuration files to store commonly used options for the OpenVPN. In general, each option can be specified on
the command line using the following command:

--<some option> <option-arguments>

It can also be specified in a configuration file using <some option> <option-arguments>, that is, remove the two dashes in front of
the command-line argument.

The configuration file is specified on the command-line using the --config <path> option. Almost all options specified in a configuration
file are treated as if they were specified on the command line. As we will see later in this book, it is possible to store certificates and private key
files inline inside a configuration file. It is not easily possible to do the same using command-line arguments.

It is also possible to mix configuration files and command-line arguments. This makes it easy to store commonly used options in a configuration
file, which can be overridden using command-line arguments.

Note

Not all configuration options can be overridden. Some options can be specified multiple times (notably, remote <remote-host>). In those
cases, the first occurrence is usually tried first.

The server-side command line from the previous example can be converted into the following configuration file:

ifconfig 10.200.0.1 10.200.0.2

dev tun

secret secret.key 0

route 192.168.4.0 255.255.255.0

daemon

log /var/log/movpn-02-server.log

If this configuration file is stored as movpn-02-01-server.conf, then the command to launch the listener becomes:

[root@server] # openvpn --config movpn-02-01-server.conf

Note that the order of the command-line arguments is important. All options specified before the --config <path> option are overridden
by the options specified inside the configuration file. All options specified after the --config option overrule the options in the configuration
file (with a few exceptions, as noted earlier).

40

The complete setup
Based on the previous examples, we can now construct a complete production-level setup using configuration files, including routing, logging,
IPv6 support, as well as a few other production features that OpenVPN offers.

Consider the following network layout:

For the server, we create the following configuration file movpn-02-02-server.conf:

dev tun

proto udp

local openvpnserver.example.com

lport 1234

remote openvpnclient.example.com

rport 4321

secret secret.key 0

ifconfig 10.200.0.1 10.200.0.2

route 192.168.4.0 255.255.255.0

tun-ipv6

ifconfig-ipv6 2001:610:120::200:0:1 2001:610:120::200:0:2

user nobody

groupnobody # use 'group nogroup' on Debian/Ubuntu

persist-tun

persist-key

keepalive 10 60

ping-timer-rem

verb 3

daemon

log-append /var/log/openvpn.log

For the client, we create the file movpn-02-02-client.conf:

dev tun

proto udp

local openvpnclient.example.com

lport 4321

remote openvpnserver.example.com

rport 1234

secret secret.key 1

ifconfig 10.200.0.2 10.200.0.1

route 192.168.122.0 255.255.255.0

tun-ipv6

ifconfig-ipv6 2001:610:120::200:0:2 2001:610:120::200:0:1

user nobody

group nobodygroup nobody # use 'group nogroup' on Debian/Ubuntu

persist-tun

persist-key

keepalive 10 60

ping-timer-rem

verb 3

daemon

log-append /var/log/openvpn.log

The client and server configuration files are very similar, except for the mirrored addresses and mirrored key direction.

41

There are some new options introduced in these configuration files:

While proto udp is the default protocol, it is wise to explicitly list it in the configuration file to avoid any confusion.
local <IP> is the local IPv4 address on which OpenVPN will listen for incoming connections. If this address is not specified,
OpenVPN will listen on address 0.0.0.0, which means all interfaces.
lport is the local port that OpenVPN will listen on. The default value is 1194, but any valid and available port number can be used.
remote <IP> is the remote IPv4 address from which the OpenVPN server process will accept incoming connections. If this address
is not specified, OpenVPN will accept incoming connections from all addresses.
rport is the remote port that OpenVPN will connect to. Normally, this is specified using port but when a different local port is used,
it is handier to explicitly specify rport.
tun-ipv6 instructs OpenVPN to create a tunnel capable of passing IPv6 traffic.
ifconfig-ipv6 configures the local and remote IPv6 endpoints. For this example, the last three numbers of the IPv6 address match
the IPv4 endpoints.
user nobody and group nobody instruct OpenVPN to drop to UNIX user nobody and group it after the connection has come
up. This further enhances security, as an attack on the tunnel will less likely result in a root exploit. Note that on Debian/Ubuntu, the
group nogroup is used.
persist-tun and persist-key instruct OpenVPN to not reopen the tun device or generate new keying material whenever the
tunnel is restarted. These options are particularly useful in combination with user nobody, as the user nobody normally does not
have the access rights to open a new tun interface.
keep-alive 10 60 and ping-timer-rem are useful options to make sure that the VPN connection remains up, even if there is
no traffic flowing over the tunnel.

Instead of specifying a very lengthy command line to launch ends of the tunnel, we can now start both ends using the following commands:

[root@server] # openvpn --config movpn-02-02-server.conf

[root@client] # openvpn --config movpn-02-02-client.conf

Check the openvpn.log files on both ends for the magic sentence:

Thu Sep 11 13:21:51 2014 Initialization Sequence Completed

Finally, we verify that we can reach the other end of the tunnel using both ping and ping6:

remote IPv4 LAN address

$ ping -c 2 192.168.4.100

PING 192.168.4.100 (192.168.4.100) 56(84) bytes of data.

64 bytes from 192.168.4.100: icmp_seq=1 ttl=64 time=3 ms

64 bytes from 192.168.4.100: icmp_seq=2 ttl=64 time=5 ms

remote IPv6 tunnel address

$ ping6 -c 2 2001:610:120::200:0:2

PING 2001:610:120::200:0:2(2001:610:120::200:0:2) 56 data bytes

64 bytes from 2001:610:120::200:0:2: icmp_seq=1 ttl=64 time=4 ms

64 bytes from 2001:610:120::200:0:2: icmp_seq=2 ttl=64 time=4 ms

remote IPv6 LAN address

$ ping6 -c 2 2001:610:120::168:4:100

PING 2001:610:120::168:4:100(2001:610:120::168:4:100) 56 data byte

64 bytes from 2001:610:120::168:4:100: icmp_seq=1 ttl=64 time=6 ms

64 bytes from 2001:610:120::168:4:100: icmp_seq=2 ttl=64 time=3 ms

Note that in order to get routing to work that we now need IP forwarding on both ends, as well as the return route for the computers on the LAN
segment. On the client-side LAN, we need routes similar to the following:

route add -net 10.200.0.0/24 gw 192.168.4.100

route add -net 192.168.122.0/24 gw 192.168.4.100

Here, 192.168.4.100 is the LAN address of the OpenVPN client.

On the server-side LAN, we need the following:

route add -net 10.200.0.0/24 gw 192.168.122.1

route add -net 192.168.4.0/24 gw 192.168.122.1

Here 192.168.122.1 is the LAN address of the OpenVPN server.

Note

Currently, it is required to always specify an IPv4 address using ifconfig, even if the tunnel is IPv6-only. This shortcoming will be
addressed in OpenVPN 2.4+IP-less setup.

Advanced IP-less setup
The capability of OpenVPN to allow user-defined scripts to be run when the VPN connection is started allows for some advanced setups. In this
example, we will use a custom up script to create an OpenVPN tunnel, without assigning IP addresses to the endpoints of the tunnel. In a routed
network setup, this ensures that the tunnel endpoints can never be reached themselves, which adds some security and can also make the routing
tables a bit shorter.

This script has only been tested on Linux systems, as it requires some network interface configuration that is not available on other platforms.

42

We use the same network layout as in the previous example, but without the IPv6 addressing:

For the server, we create the following configuration file movpn-02-03-server.conf:

dev tun

secret secret.key

ifconfig-noexec

up /etc/openvpn/up.sh

script-security 2

verb 3

daemon

log-append /var/log/openvpn.log

Here's the accompanying up.sh script:

#!/bin/bash

/sbin/ifconfig $1 0.0.0.0 up

/sbin/ip route add 192.168.4.0/24 dev $1

Here, the network 192.168.4.0/24 is the client-side LAN that we want to reach from the server-side LAN. For the client, we create the file
movpn-02-03-client.conf:

dev tun

secret secret.key

ifconfig-noexec

remote openvpnserver.example.com

up /etc/openvpn/up.sh

script-security 2

verb 3

daemon

log-append /var/log/openvpn.log

Here's the accompanying up.sh script:

#!/bin/bash

/sbin/ifconfig $1 0.0.0.0 up

/sbin/ip route add 192.168.122.0/24 dev $1

Make sure the up.sh scripts are executable (chmod a+x up.sh) before starting the VPN connection.

Launch both ends of the tunnel:

[root@server]# openvpn --config movpn-02-03-server.conf

[root@client]# openvpn --config movpn-02-03-client.conf

Check the openvpn.log files on both ends for the magic sentence:

Thu Sep 11 15:57:51 2014 Initialization Sequence Completed

Check the addresses assigned to the tun0 interface:

$ ifconfig tun0

tun0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1

 RX packets:6 errors:0 dropped:0 overruns:0 frame:0

 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:504 (504.0 b) TX bytes:504 (504.0 b)

43

Alternatively, you can use a more modern iproute2 command:

$ ip addr show dev tun0

The interface is up but does not have an IP address. Next, we want to verify the routing table:

$ /sbin/ip route show

[...]

192.168.4.0/24 dev tun0 scope link

[...]

The right route is present, so finally we verify that we can ping a host on the client-side LAN:

[root@centos6-kvm ~]# ping -c 2 192.168.4.10

PING 192.168.4.10 (192.168.4.10) 56(84) bytes of data.

64 bytes from 192.168.4.10: icmp_seq=1 ttl=62 time=5 ms

64 bytes from 192.168.4.10: icmp_seq=2 ttl=62 time=5 ms

44

Three-way routing
As stated in the introduction, point-to-point networks are an excellent choice when connecting a small number of endpoints. In this example, we
will show how to connect three sites together using point-to-point tunnels. It will also show how quickly the configuration of such a setup can
become very complex.

Consider the following network layout:

We will create three tunnels between the sites and set up redundant routes. That way, if one of the tunnels goes down, all the sites will remain
visible to each other. However, this is at the cost of a performance penalty. Let's assume that the link between site A and site B goes down. The
backup route goes from site A to site C to site B, so now traffic from site A to site B has to make an extra hop.

First, we create three secret keys:

$ openvpn –-genkey –-secret AtoB.key

$ openvpn –-genkey –-secret AtoC.key

$ openvpn –-genkey –-secret BtoC.key

Then, we transfer these keys to all endpoints over a secure channel (for example, using scp).

Next, we create six configuration files: three listener or server configurations, and three client configurations.

First, create the server config file BtoA.conf:

dev tun

proto udp

port 1194

remote siteA

secret AtoB.key 0

ifconfig 10.200.0.1 10.200.0.2

route 192.168.4.0 255.255.255.0 vpn_gateway 5

route 192.168.6.0 255.255.255.0 vpn_gateway 10

route-delay

keepalive 10 60

verb 3

daemon

log-append /var/log/openvpn-BtoA.log

Next, create CtoA.conf as follows:

dev tun

proto udp

port 1195

remote siteAsecret AtoC.key 0

ifconfig 10.200.0.5 10.200.0.6

route 192.168.4.0 255.255.255.0 vpn_gateway 5

route 192.168.5.0 255.255.255.0 vpn_gateway 10

route-delay

keepalive 10 60

verb 3

daemon

log-append /var/log/openvpn-CtoA.log

Then, create the last server configuration file BtoC.confuse:

dev tun

45

proto udp

port 1196

remote siteC

secret BtoC.key 0

ifconfig 10.200.0.9 10.200.0.10

route 192.168.4.0 255.255.255.0 vpn_gateway 10

route 192.168.6.0 255.255.255.0 vpn_gateway 5

route-delay

keepalive 10 60

verb 3

daemon

log-append /var/log/openvpn-BtoC.log

Now we create the client (connector) configuration file AtoB.conf:

dev tun

proto udp

port 1194

remote siteB

secret AtoB.key 1

ifconfig 10.200.0.2 10.200.0.1

route 192.168.5.0 255.255.255.0 vpn_gateway 5

route 192.168.6.0 255.255.255.0 vpn_gateway 10

route-delay

keepalive 10 60

verb 3

daemon

log-append /var/log/openvpn-AtoB.log

Next, we create the client configuration file AtoC.conf:

dev tun

proto udp

port 1195

remote siteC

secret AtoC.key 1

ifconfig 10.200.0.6 10.200.0.5

route 192.168.5.0 255.255.255.0 vpn_gateway 10

route 192.168.6.0 255.255.255.0 vpn_gateway 5

route-delay

keepalive 10 60

verb 3

daemon

log-append /var/log/openvpn-AtoC.log

Finally, we create the client configuration file CtoB.conf:

dev tun

proto udp

port 1196

remote siteB

secret BtoC.key 1

ifconfig 10.200.0.10 10.200.0.9

route 192.168.4.0 255.255.255.0 vpn_gateway 10

route 192.168.5.0 255.255.255.0 vpn_gateway 5

route-delay

keepalive 10 60

verb 3

daemon

log-append /var/log/openvpn-CtoB.log

Start each server and connect its corresponding client:

[siteB]# openvpn --config BtoA.conf

[siteA]# openvpn --config AtoB.conf

Check the log file on both sides of the tunnel, and verify that routing is (partially) working before proceeding to the next site:

[siteB]$ openvpn --config BtoC.conf

[siteC]$ openvpn --config CtoB.conf

and finally:

[siteC]$ openvpn --config CtoA.conf

[siteA]$ openvpn --config AtoC.conf

At this point, all routes should be present, including the redundant routes. For example, site A has two routes to site B (LAN 192.168.5.0/24), as

46

can be seen from the routing table:

[siteA]$ ip route show

[…]

192.168.5.0/24 via 10.200.0.1 dev tun0 metric 5

192.168.5.0/24 via 10.200.0.5 dev tun1 metric 10

[…]

We can observe the following from this table:

One via the direct tunnel to site B. This route has the lowest metric.
One via an indirect tunnel: first to site C and then onward to site B. This route has a higher metric and is not chosen until the first route
is down.

This setup has the advantage that if one tunnel fails, then after 60 seconds the connection and its corresponding routes are dropped. The backup
route to the other network then automatically takes over and all three sites can reach each other again. After the original tunnel comes back up,
the routes with the higher metric take precedence again and the original situation is restored.

A downside of this configuration is that during those 60 seconds all traffic is lost. A routing protocol such as RIPv2 or OSPF might help
discover the failing routes much faster, resulting in less network downtime.

Route, net_gateway, vpn_gateway, and metrics
The following configuration statements are vital in this setup. The word vpn_gateway is a special OpenVPN keyword and it specifies the
VPN remote endpoint address. Normally, this keyword does not have to be specified, unless it is also necessary to specify the metric for this
route.

The syntax and options for the route directive is:

route <network> <netmask> vpn_gateway <metric>

Here, gateway can either be explicitly set as an IPv4 address, or the special keywords vpn_gateway or net_gateway can be used. If no
gateway and no metric are specified, then vpn_gateway is used.

The keyword net_gateway is useful to specify a subnet that should explicitly not be routed via the VPN. In Chapter 4, Client/Server Mode
with tun Devices, a more detailed explanation of the route options will be given.

The metric has a default metric that can be set using the following command:

route-metric m

This then applies to all routes. If one wishes to overrule the metric for a particular route (as we have done in this example), then it is required to
specify the gateway (vpn_gateway in our case), followed by the metric for that particular route.

The configuration statement route-delay is required here to ensure that the routes are added after all connections are available. Without it
the routes might be added too soon, resulting in a failure to add a route to one of the remote subnets.

47

Bridged tap adapter on both ends
Another advanced use case of a dedicated point-to-point VPN is to bridge two remote network segments together. OpenVPN allows you to
bridge two network segments with the same IP address range together to form a single transparent network segment. It is generally not
advisable to do this, as the performance of such a bridged network will not be optimal. In some cases, it is unavoidable. Normally, it would be
better to assign different subnets to both ends, but sometimes special software is tied to a specific IP address and there is no alternative but to
have the same subnet on both ends.

Consider the following network layout:

At the client-side, the network 192.168.4.0/24 is in use—with the OpenVPN client found at 192.168.4.128. At the server side, the same subnet
is in use—with the OpenVPN server found at 192.168.4.65. The goal is to bridge the two networks together, so that all machines on both ends
can see each other transparently.

In dev tap mode OpenVPN will create a new or open an existing tap adapter. On most modern operating systems, a tap adapter behaves just
like a regular network adapter and if the operating system supports adapter bridging then the tap adapter can be bridged with another network
adapter in the system. This is known to work on Linux, Free/Open/NetBSD, and Microsoft Windows. On Linux, the bridge-utils package
needs be installed for this example to work.

In this example, the tap adapter is bridged with the LAN interface of both the OpenVPN client and server. In order to be able to do this, the tap
adapter is created in a persistent state before the VPN connection is initialized:

openvpn --mktun --dev tap0

Thu Sep 11 16:57:30 2014 TUN/TAP device tap0 opened

Thu Sep 11 16:57:30 2014 Persist state set to: ON

Then, the bridge is created and initialized. On the client side execute the following commands:

brctl addbr br0

brctl addif br0 eth0

brctl addif br0 tap0

ifconfig eth0 0.0.0.0 up

ifconfig tap0 0.0.0.0 up

ifconfig br0 192.168.4.128 netmask 255.255.255.0 up

Check the status of the bridge and its associated adapters before continuing. Also, make sure that LAN access is still possible:

brctl show

bridge name bridge id STP enabled interfaces

br0 8000.5c260a307224 no eth0

 tap0

ifconfig -a

br0 Link encap:Ethernet HWaddr 5C:26:0A:30:72:24

 inet addr:192.168.4.128 Bcast:192.168.4.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:4 errors:0 dropped:0 overruns:0 frame:0

 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:244 (244.0 b) TX bytes:732 (732.0 b)

eth0 Link encap:Ethernet HWaddr 5C:26:0A:30:72:24

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:2087 errors:0 dropped:0 overruns:0 frame:0

 TX packets:2427 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:203516 (198.7 KiB) TX bytes:231571 (226.1 KiB)

 Interrupt:20 Memory:f5400000-f5420000

tap0 Link encap:Ethernet HWaddr CA:85:1E:AE:AF:59

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:11 overruns:0 carrier:0

 collisions:0 txqueuelen:100

48

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

ping -c 2 192.168.4.10

The output should be similar for the server side; with bridge IP address 192.168.4.65.

Next, we create the configuration file movpn-02-05.conf, which can be the same on both sides:

dev tap0

secret secret.key

verb 3

daemon

log-append /var/log/openvpn.log

Note

In the configuration file, the full name of the device tap0 is used. If the 0 is omitted, then OpenVPN will open a new tap adapter and the
bridge will not function.

Next, we start the client and the server:

[root@server] # openvpn --config movpn-02-05.conf \

 --remote openvpnclient.example.com

[root@client] # openvpn --config movpn-02-05.conf \

 --remote openvpnserver.example.com

After the initialization sequence has been completed, the network segments are bridged. Verify this by pinging a host on the remote end.

It is also useful to watch the traffic flowing over the tunnel. The downside of a bridged network is that all (broadcast) traffic generated on one
end is copied to the other end. This can result in poor network performance. If there is a lot of network background noise, then this will show up
in a tcpdump on the tap0 interface:

17:19:57.280459 72:24:b4:f0:16:81 > 01:80:c2:00:00:00, 802.3, length 52: LLC, dsap STP (0x42)

Individual, ssap STP (0x42) Command, ctrl 0x03: STP 802.1d, Config, Flags [none], bridge-id

8000.52:54:00:6e:cd:0b.8003, length 35

17:19:59.280486 72:24:b4:f0:16:81 > 01:80:c2:00:00:00, 802.3, length 52: LLC, dsap STP (0x42)

Individual, ssap STP (0x42) Command, ctrl 0x03: STP 802.1d, Config, Flags [none], bridge-id

8000.52:54:00:6e:cd:0b.8003, length 35

17:20:00.112516 52:54:00:6e:cd:0b > 98:4f:ee:00:7d:e1, ethertype ARP (0x0806), length 42:

Request who-has 192.168.122.23 tell 192.168.122.1, length 28

17:20:01.112534 52:54:00:6e:cd:0b > 98:4f:ee:00:7d:e1, ethertype ARP (0x0806), length 42:

Request who-has 192.168.122.23 tell 192.168.122.1, length 28

17:20:01.280468 72:24:b4:f0:16:81 > 01:80:c2:00:00:00, 802.3, length 52: LLC, dsap STP (0x42)

Individual, ssap STP (0x42) Command, ctrl 0x03: STP 802.1d, Config, Flags [none], bridge-id

8000.52:54:00:6e:cd:0b.8003, length 35

17:20:02.112524 52:54:00:6e:cd:0b > 98:4f:ee:00:7d:e1, ethertype ARP (0x0806), length 42:

Request who-has 192.168.122.23 tell 192.168.122.1, length 28

17:20:04.161591 98:4f:ee:00:7d:e1 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60:

Request who-has 192.168.4.100 tell 192.168.4.10, length 46

17:20:05.153670 98:4f:ee:00:7d:e1 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60:

Request who-has 192.168.4.100 tell 192.168.4.10, length 46

The output of this tcpdump capture showed that the Spanning Tree Protocol was enabled on the bridge on the server side by issuing the
following command:

brctl stp br0 off

This traffic was stopped, resulting in much less noise over the bridge.

Note

Turn off STP on a network bridge only if you know what you are doing. In this case, there is no risk of loops as there is only one bridge and
there are only two devices connected.

The ARP requests that are seen in the tcpdump capture cannot easily be suppressed. However, these requests are very small and should not
result in a large performance hit. On a high-latency line, however, these requests will become a bottleneck.

Removing the bridges
If the bridge is no longer needed, it is best to remove the network bridge and the persistent tap0 devices:

ifconfig br0 down

49

brctl delif br0 tap0

brctl delif br0 eth0

brctl delbr br0

openvpn --rmtun --dev tap0

Thu Sep 11 18:55:22 2014 TUN/TAP device tap0 opened

Thu Sep 11 18:55:22 2014 Persist state set to: OFF

Remember to bring the eth0 network interface back online.

50

Combining point-to-point mode with certificates
For the next example, we borrow some bits from Chapter 3, PKIs and Certificates. In client/server mode, OpenVPN is configured using a
Public Key Infrastructure (PKI), with X.509 certificates and private keys. It is also possible to use X.509 certificates and private keys to set
up a point-to-point tunnel. The advantage of using X.509 certificates over pre-shared keys is that it offers Perfect Forwarding Secrecy (PFS),
which greatly enhances the security of your VPN data. Without PFS, if an attacker manages to break the encryption at some point, then all
previously recorded VPN traffic can be decrypted. With PFS, it is not possible to decrypt old data.

In order to set up a point-to-point tunnel using certificates, we must first copy over the CA certificate and the certificate/private key pair for both
endpoints:

[root@server] # mkdir -p /etc/openvpn/movpn

[root@server] # chmod 700 /etc/openvpn/movpn

[root@server] # cd /etc/openvpn/movpn

[root@server] # PKI=<PKI_DIR>/ssladmin/active

[root@server] # cp -a $PKI/ca.crt movpn-ca.crt

[root@server] # cp -a $PKI/Mastering_OpenVPN_Server.crt server.crt

[root@server] # cp -a $PKI/Mastering_OpenVPN_Server.key server.key

and

[root@client] # mkdir -p /etc/openvpn/movpn

[root@client] # chmod 700 /etc/openvpn/movpn

[root@client] # cd /etc/openvpn/movpn

[root@client] # PKI=<PKI_DIR>/ssladmin/active

[root@client] # cp -a $PKI/ca.crt movpn-ca.crt

[root@client] # cp -a $PKI/client1.crt client1.crt

[root@client] # cp -a $PKI/client1.key client1.key

On the server side, we also need to generate a Diffie-Hellman parameter file that is required for VPN session keys. The session keys are
ephemeral or temporary keys and are generated when the connection between client and server is first set up.

To generate a Diffie-Hellman parameter file, execute the following commands:

[root@server] # cd /etc/openvpn/movpn

[root@server] # openssl dhparam -out dh2048.pem 2048

We are now ready to set up the OpenVPN configuration files. On the server side, create the following configuration file, and save it as movpn-
02-06-server.conf:

proto udp

port 1194

dev tun

tls-server

ifconfig 10.200.0.1 10.200.0.2

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

persist-key

persist-tun

keepalive 10 60

user nobody

group nobody

use 'group nogroup' on Debian/Ubuntu

verb 3

daemon

log-append /var/log/openvpn.log

On the client side, create the configuration file movpn-02-06-client.conf:

port 1194

dev tun

tls-client

ifconfig 10.200.0.2 10.200.0.1

remote openvpnserver.example.com

remote-cert-tls server

tls-auth /etc/openvpn/movpn/ta.key 1

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/client1.crt

key /etc/openvpn/movpn/client1.key

persist-key

persist-tun

keepalive 10 60

user nobody

group nobody

51

use 'group nogroup' on Debian/Ubuntu

verb 3

daemon

log-append /var/log/openvpn.log

Next, we start the client and the server:

[root@server] # openvpn --config movpn-02-06-server.conf

[root@client] # openvpn --config movpn-02-06-client.conf

After the initialization sequence has been completed, we will see that the tunnel created has the same properties as a tunnel created with pre-
shared keys.

52

Summary
Point-to-point was the only supported configuration in the initial versions of OpenVPN. In this chapter, we started off with a very basic point-
to-point example. We introduced more features of OpenVPN, and saw that there are good reasons to use this mode in a production environment.
In the last use case, bridged TAP adapters are used on both client and server side.

This is the only chapter in which point-to-point mode is explained. In the next chapter, we will properly set up the certificates needed for using
the other mode of OpenVPN, the client/server model.

53

Chapter 3. PKIs and Certificates
Primarily, OpenVPN uses X.509 certificates for client authentication and VPN traffic encryption, though this support can be disabled. Looking
at the mailing list and IRC channel history, setup and maintenance of the Private Key Infrastructure (PKI) for X.509 certificates is a difficult
concept, and can be a cumbersome task.

The OpenSSL binary has all the tools required to manually manage a PKI, but the command options are complicated and, if not automated, can
be prone to error. It is recommended that organizations or individuals use a script or other package to manage their PKI. Not only does this limit
errors, but also rules and other general criteria can be better adhered to.

Two open source projects exist that are expressly written to work well with OpenVPN implementations. Easy-RSA is a long-standing project
that has always been tied closely with the OpenVPN project. Originally written along-side OpenVPN, its initial purpose was to build a
Certificate Authority (CA) and its requisite components. Today, this project is still maintained alongside the OpenVPN project, though they
are technically separate.

Another project, ssl-admin, is a Perl script written to fill perceived gaps in the Easy-RSA code. The two projects approach the PKI management
tasks differently, and both have a unique solution. The ssl-admin project is an interactive script providing menus and user feedback, while Easy-
RSA is primarily a batch utility.

Today, both the Easy-RSA and ssl-admin projects are maintained by Eric Crist. Josh Cepek joined, and has written most of the initial v3.0 Easy-
RSA code. The goal is to eventually merge the two projects and retain all the functionalities of both.

An overview of PKI
PKI is generally a hierarchical organization of encryption certificate and key pairs. Typically, as used with most websites, the top of the
hierarchy is the CA. This is the root of the entire tree, and trust is rooted at this level. If the root is trusted, all the key pairs underlying will also
be trusted. From the root-level CA, there can be client certificates, server certificates, sub-CAs, and certificate revocation lists (CRLs). Under
each sub-CA, this list of possibilities repeats.

To use a PKI to its full potential, the users and systems need to trust the root CA, and any intermediate CAs in the chain. With most modern
web browsers, the browser authors or vendors have vetted and approved a large list of root-level certificate authorities to trust by default. These

54

authorities are generally commercial vendors such as VeriSign, Go Daddy, Comodo, Trend Micro, various government entities, and many
others.

Due to this preapproved list for browsers, the vast majority of Internet users are completely unaware of how PKI works. As a result, new users
to OpenVPN, and any software that requires a PKI, find configuring and managing a hurdle—both conceptually and technically. In the case of
public websites, verification of a third-party site by a trusted authority is needed. In the context of OpenVPN, however, there is generally a
single entity within an organization that is implicitly trusted, the IT department. OpenVPN is typically used within a single organization, and
trust for such is inherent. Easy-RSA and ssl-admin were both written to help both novice and advanced users better manage their PKI.

With a single point-to-point link, it often doesn't make sense to involve the complexity of PKI to protect a tunnel; pre-shared keys are sufficient.
However, when many users are involved, there is much more potential for lost and stolen keys and employee turnover. With a properly
configured PKI, it is a relatively simple matter to revoke a lost certificate, or that of a departing employee. A new one is just as easily generated
and redeployed.

Using both Easy-RSA and ssl-admin, we will create a simple PKI with a CA, a server certificate, some client certificates, and a certificate
revocation list. Additionally, we will use these utilities to generate Diffie-Hellman (DH) parameters, which will be used and discussed in later
chapters.

The OpenVPN PKI flow is as follows:

PKI using Easy-RSA
At the time this chapter was written, Easy-RSA 2.2.2 was officially the latest release, alongside v3.0.0-rc2. Since the v3.0 series is nearing
release, this section will focus on that version. Releases for Easy-RSA can be found at https://github.com/OpenVPN/easy-rsa/releases.

This exercise will demonstrate how to build a CA from scratch. Upgrading from Easy-RSA 2.2 is not covered here. After downloading the
Easy-RSA package, decompress the files, and you should find a directory (in our case, EasyRSA-3.0.0-rc2):

ecrist@computer:~/Downloads-> tar -xzvf EasyRSA-3.0.0-rc2.tgz

x EasyRSA-3.0.0-rc2/

x EasyRSA-3.0.0-rc2/x509-types/

x EasyRSA-3.0.0-rc2/x509-types/server

x EasyRSA-3.0.0-rc2/x509-types/ca

x EasyRSA-3.0.0-rc2/x509-types/COMMON

x EasyRSA-3.0.0-rc2/x509-types/client

x EasyRSA-3.0.0-rc2/openssl-1.0.cnf

55

https://github.com/OpenVPN/easy-rsa/releases

x EasyRSA-3.0.0-rc2/ChangeLog

x EasyRSA-3.0.0-rc2/Licensing/

x EasyRSA-3.0.0-rc2/Licensing/gpl-2.0.txt

x EasyRSA-3.0.0-rc2/COPYING

x EasyRSA-3.0.0-rc2/KNOWN_ISSUES

x EasyRSA-3.0.0-rc2/doc/

x EasyRSA-3.0.0-rc2/doc/Hacking.md

x EasyRSA-3.0.0-rc2/doc/EasyRSA-Upgrade-Notes.md

x EasyRSA-3.0.0-rc2/doc/EasyRSA-Readme.md

x EasyRSA-3.0.0-rc2/doc/EasyRSA-Advanced.md

x EasyRSA-3.0.0-rc2/doc/Intro-To-PKI.md

x EasyRSA-3.0.0-rc2/README.quickstart.md

x EasyRSA-3.0.0-rc2/vars.example

x EasyRSA-3.0.0-rc2/easyrsa

Once this is extracted, copy the vars.example file to vars. It is recommended that you set the Easy-RSA working directory. Line 45 of
vars defines EASYRSA to $PWD (present working directory) by default. This can be problematic, particularly if you're using Easy-RSA to
manage multiple certificate authorities. Uncomment this line, and change it to something sensible for your environment, such as
/usr/local/etc/easy-rsa.

Tip

When Easy-RSA is initialized, everything within the EASYRSA directory will be deleted. Be careful about what you define here. The EASYRSA
directory is where the certificate store resides. This is not where the executables and variables are.

You'll likely want to set the organizational fields, which are the following variables:

EASYRSA_REQ_COUNTRY

EASYRSA_REQ_PROVICE

EASYRSA_REQ_CITY

EASYRSA_REQ_ORG

EASYRSA_REQ_EMAIL

EASYRSA_REQ_OU

The values are used as defaults for all certificate requests generated, including the root CA. Make sure those lines are uncommented in the file.
No other changes to vars are needed.

If your defined EASYRSA directory does not exist, create it now and copy the openssl-1.0.cnf file from the package distribution to your
new directory. For our examples, we have put the EASYRSA certificate store in /usr/local/etc/easy-rsa:

ecrist@computer:~/Downloads/EasyRSA-3.0.0-rc2-> mkdir -p /usr/local/etc/easy-rsa

ecrist@computer:~/Downloads/EasyRSA-3.0.0-rc2-> cp openssl-1.0.cnf /usr/local/etc/easy-rsa

ecrist@computer:~/Downloads/EasyRSA-3.0.0-rc2-> cp –R x509-types /usr/local/etc/easy-rsa/

Next, we are ready to initialize the Easy-RSA PKI:

ecrist@computer:~/Downloads/EasyRSA-3.0.0-rc2-> ./easyrsa init-pki

Note that we are using Easy-RSA configuration from ./vars.

init-pki complete; you may now create a CA or requests.

Your newly created PKI dir is: /usr/local/etc/easy-rsa/pki

In this case, the initialization process cleans out the contents of, in this case, the pki directory, and creates the private and reqs
subdirectories.

You can have multiple vars files for managing multiple CAs, and have all those nested in the same EASYRSA root directory. To do this, you
have to change the EASYRSA_PKI variable for each CA.

Building the CA
The build-ca subcommand first generates a Certificate Signing Request (CSR), and subsequently self-signs that request.

To build the root certificate authority certificate/key pair, run the build-ca command:

ecrist@computer:~/Downloads/EasyRSA-3.0.0-rc2-> ./easyrsa build-ca

Note: using Easy-RSA configuration from: ./vars

Generating a 2048 bit RSA private key

.......+++

............+++

writing new private key to '/usr/local/etc/easy-rsa/pki/private/ca.key'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is
called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank; some fields will have a default value defined,

56

If you enter '.', the field will be left blank.

Common Name (eg: your user, host, or server name) [Easy-RSA CA]:Mastering OpenVPN

Tip

Spaces should not be used in the Common Name field. This will cause problems in Easy-RSA as well as potentially with CCDs, common-
name-as-username, and other cases. Make sure there is a trailing forward slash (/) after the path or some subcommands (gen-crl and others)
will not function.

CA creation complete and you may now import and sign cert requests.

Your new CA certificate file for publishing is at:

/usr/local/etc/easy-rsa/pki/ca.crt

When self-signing, the CA constraint is set to true and key usage parameters are defined, allowing this new certificate to sign other certificates,
including the Certificate Revocation List (CRL). This information can be verified using the openssl command-line utility:

ecrist@computer:~/Downloads/EasyRSA-3.0.0-rc2-> openssl x509 -in /usr/local/etc/easy-

rsa/pki/ca.crt -text -noout

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 89:39:42:bb:f3:6b:a9:f6

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: CN=Mastering OpenVPN

 Validity

 Not Before: Oct 1 15:02:44 2014 GMT

 Not After : Sep 28 15:02:44 2024 GMT

 Subject: CN=Mastering OpenVPN

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (2048 bit)

 Modulus (2048 bit):

 ...

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 69:6C:A3:85:63:61:09:DE:8F:7D:38:F7:A2:CB:1C:31:75:90:34:93

 X509v3 Authority Key Identifier:

 keyid:69:6C:A3:85:63:61:09:DE:8F:7D:38:F7:A2:CB:1C:31:75:90:34:93

 DirName:/CN=Mastering OpenVPN

 serial:89:39:42:BB:F3:6B:A9:F6

 X509v3 Basic Constraints:

 CA:TRUE

 X509v3 Key Usage:

 Certificate Sign, CRL Sign

 Signature Algorithm: sha256WithRSAEncryption

 ...

In the output from openssl, we see the x509v3 Basic Constraints as well as the x509v3 Key Usage parameters. Your CA is
now ready to begin signing client and server certificates.

Certificate revocation list
The gen-crl subcommand generates a CRL. Although, at this point, we only have a CA certificate, it is recommended to generate an empty
CRL. This allows you to stage your OpenVPN configuration with the file, and will not require a restart later. OpenVPN will log errors if a
nonexistent CRL is listed in its configuration, but the file can be replaced on the fly, as it is re-read on every client connection.

ecrist@computer:~/Downloads/EasyRSA-3.0.0-rc2-> ./easyrsa gen-crl

Note: using Easy-RSA configuration from: ./vars

Using configuration from /usr/local/etc/easy-rsa/openssl-1.0.cnf

Enter pass phrase for /usr/local/etc/easy-rsa/pki/private/ca.key:

An updated CRL has been created.

CRL file: /usr/local/etc/easy-rsa/pki/crl.pem

We can verify the CRL using the openssl crl command:

ecrist@computer:~/Downloads/EasyRSA-3.0.0-rc2-> openssl crl -noout -text -in

/usr/local/etc/easy-rsa/pki/crl.pem

Certificate Revocation List (CRL):

 Version 2 (0x1)

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: /CN=Mastering OpenVPN

57

 Last Update: Oct 1 15:50:46 2014 GMT

 Next Update: Mar 30 15:50:46 2015 GMT

 CRL extensions:

 X509v3 Authority Key Identifier:

 keyid:69:6C:A3:85:63:61:09:DE:8F:7D:38:F7:A2:CB:1C:31:75:90:34:93

 DirName:/CN=Mastering OpenVPN

 serial:89:39:42:BB:F3:6B:A9:F6

No Revoked Certificates.

 Signature Algorithm: sha256WithRSAEncryption

 ...

Server certificates
OpenVPN can make use of the x509 key usage parameters, ensuring clients connect with valid client certificates, and the clients can ensure a
server is authorized to be a server. This prevents one of your client certificates from being used as a server in a Man-In-The-Middle (MITM)
attack. Without this constraint, it is possible for any certificate signed by the VPN CA to be used to impersonate a client or server. Because the
rogue certificate resides within the same PKI, the certificate itself is still valid, and will pass the generic PKI checks.

Easy-RSA supports signing certificates with the server key usage parameter using the build-server-full subcommand.

ecrist@computer:~/EasyRSA-3.0.0-rc2-> ./easyrsa build-server-full movpn-server

Note: using Easy-RSA configuration from: ./vars

Generating a 2048 bit RSA private key

............+++

..............................+++

writing new private key to '/usr/local/etc/easy-rsa/pki/private/movpn-server.key'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

Using configuration from /usr/local/etc/easy-rsa/openssl-1.0.cnf

Enter pass phrase for /usr/local/etc/easy-rsa/pki/private/ca.key:

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

commonName :PRINTABLE:'movpn-server'

Certificate is to be certified until Oct 18 19:15:31 2024 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

We can verify the server certificate with the openssl command:

ecrist@computer:~/EasyRSA-3.0.0-rc2-> openssl x509 -noout -text -in /usr/local/etc/easy-

rsa/pki/issued/movpn-server.crt

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 1 (0x1)

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: CN=Mastering OpenVPN

 Validity

 Not Before: Oct 21 19:15:31 2014 GMT

 Not After : Oct 18 19:15:31 2024 GMT

 Subject: CN=movpn-server

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 ...

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Subject Key Identifier:

 11:AD:47:E2:1C:87:91:3B:C0:A1:53:F5:77:A7:2F:9F:0B:0F:5D:9E

 X509v3 Authority Key Identifier:

 keyid:F0:AF:20:ED:6F:A7:47:0F:C7:F2:B0:EC:CF:8B:30:09:02:E4:81:A0

 DirName:/CN=Mastering OpenVPN

 serial:84:9E:B9:14:2B:62:B4:50

 X509v3 Extended Key Usage:

 TLS Web Server Authentication

 X509v3 Key Usage:

 Digital Signature, Key Encipherment

 Signature Algorithm: sha256WithRSAEncryption

58

 ...

Note the x509v3 key usage section, and their identification of TLS Web Server Authentication. This is what current versions of
OpenVPN looks for when remote certificate types are specified.

Client certificates
Just like server certificates, clients can be authenticated using client-specific certificates. With this method, each client can be required to have a
unique certificate. The certificate Common Name (CN) can be used to determine other parameters to be pushed on a given connection via
client-connect scripts or the client-config-dir option. As of OpenVPN 2.3.7, there is still support for –client-cert-not-
required. There has been talk of removing this support from a future release. client-cert-not-required allows a client to connect
without a unique (or any) predefined certificate, much as a web browser would connect to a web server.

The easyrsa command is used to build a client certificate in much the same way we built the server certificate:

ecrist@computer:~/EasyRSA-3.0.0-rc2-> ./easyrsa build-client-full client1

Note: using Easy-RSA configuration from: ./vars

Generating a 2048 bit RSA private key

...............+++

..

..........................+++

writing new private key to '/home/ecrist/EasyRSA-3.0.0-rc2/pki/private/client1.key'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

Using configuration from /home/ecrist/EasyRSA-3.0.0-rc2/openssl-1.0.cnf

Enter pass phrase for /home/ecrist/EasyRSA-3.0.0-rc2/pki/private/ca.key:

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

commonName :PRINTABLE:'client1'

Certificate is to be certified until Oct 18 19:37:40 2024 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

We can use the openssl command to verify the key usage parameters:

ecrist@computer:~/EasyRSA-3.0.0-rc2-> openssl x509 -noout -text -in /usr/local/etc/easy-

rsa/pki/issued/client1.crt

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 2 (0x2)

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: CN=Mastering OpenVPN

 Validity

 Not Before: Oct 21 19:37:40 2014 GMT

 Not After : Oct 18 19:37:40 2024 GMT

 Subject: CN=client1

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 ...

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Subject Key Identifier:

 47:80:59:8D:5F:63:4B:1C:21:C6:DE:C6:C0:7B:DE:6A:5D:53:F9:37

 X509v3 Authority Key Identifier:

 keyid:F0:AF:20:ED:6F:A7:47:0F:C7:F2:B0:EC:CF:8B:30:09:02:E4:81:A0

 DirName:/CN=Mastering OpenVPN

 serial:84:9E:B9:14:2B:62:B4:50

 X509v3 Extended Key Usage:

 TLS Web Client Authentication

 X509v3 Key Usage:

 Digital Signature

 Signature Algorithm: sha256WithRSAEncryption

 ...

As noted in the server section, we look to the x509v3 Extended Key Usage. In the case of the client, we look for TLS Web Client
Authentication. Again, this is used when verifying remote client certificate type.

59

PKI using ssl-admin
The ssl-admin project was started during a time when Easy-RSA was considered abandoned and broken. It is a menu-driven, interactive utility
written in Perl. Like Easy-RSA, ssl-admin is a wrapper for the OpenSSL command line utilities.

To install ssl-admin on FreeBSD, install the security/ssl-admin port. For all other Unix-based systems, including OS X, an svn export is
the simplest method. The following examples are run on Mac OS X, but it will be similar for other operating systems.

To obtain ssl-admin on an OS other than FreeBSD, use the SVN command-line utility to export the current version:

ftp://ftp.secure-computing.net/pub/ssl-admin/

ecrist@computer:~-> curl -o ssa.tgz ftp://ftp.secure-computing.net//pub/ssl-admin/ssl-admin-

1.2.1.tar.gz

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 11196 100 11196 0 0 17568 0 --:--:-- --:--:-- --:--:-- 17548

Tip

The server ftp2.secure-computing.net can be used as an alternative if the primary, ftp.secure-computing.net, is offline.

ecrist@computer:~-> tar -xzvf ssa.tgz

x ssl-admin-1.2.1/

x ssl-admin-1.2.1/man5/

x ssl-admin-1.2.1/man1/

x ssl-admin-1.2.1/ssl-admin

x ssl-admin-1.2.1/ssl-admin.conf

x ssl-admin-1.2.1/Makefile

x ssl-admin-1.2.1/configure

x ssl-admin-1.2.1/openssl.conf

x ssl-admin-1.2.1/ssl-admin-e

x ssl-admin-1.2.1/man1/ssl-admin.1

x ssl-admin-1.2.1/man1/ssl-admin.1-e

x ssl-admin-1.2.1/man5/ssl-admin.conf.5

x ssl-admin-1.2.1/man5/ssl-admin.conf.5-e

To install after the export, change dir to your exported tree and run./configure, followed by make install:

ecrist@computer:~/ssl-admin-1.2.1-> ./configure

Tip

The Bourne shell is the only requirement for configure. This is not a typical configure rule set, it just mimics the behavior of one.

ecrist@computer:~/ssl-admin-1.2.1-> sudo make install

Once installed, running the ssl-admin command will initially display an error:

ecrist@computer:~/ssl-admin-> ssl-admin

/Library/ssl-admin/ssl-admin.conf doesn't exist. Did you copy the sample from /Library/ssl-

admin/ssl-admin.conf.sample? at /usr/local/bin/ssl-admin line 40.

Tip

Some versions of ssl-admin refer to the following file: ssl-admin.conf.default.

To begin using the software, you must copy the default file to the location listed in the error. This will vary across operating systems according
to their standard filesystem hierarchy. Here, we will copy ssl-admin.conf.sample to ssl-admin.conf and fix the permissions on the
new file.

Note

ssl-admin requires all operations to be done as root. This is a known poor practice and will be fixed in an upcoming release.

The commands for it are as follows:

ecrist@computer:~/ssl-admin-> sudo csh

Password:

There is no specific reason to use csh, this was just a preference of the author (for better or worse).

root@computer:~/ssl-admin-> cd /Library/ssl-admin/

root@computer:/Library/ssl-admin-> cp ssl-admin.conf.sample ssl-admin.conf

root@computer:/Library/ssl-admin-> chmod ug+rw ssl-admin.conf

root@computer:/Library/ssl-admin-> ls -l

total 12

-r--r--r-- 1 root wheel 2511 Oct 1 12:02 openssl.conf.sample

-rw-rw-r-- 1 root wheel 531 Oct 1 12:11 ssl-admin.conf

60

-r--r--r-- 1 root wheel 531 Oct 1 12:02 ssl-admin.conf.sample

From here, we can edit the configuration file. Generally, only the bottom variables need to be changed:

$ENV{'KEY_COUNTRY'}

$ENV{'KEY_PROVINCE'}

$ENV{'KEY_CITY'}

$ENV{'KEY_ORG'}

$ENV{'KEY_EMAIL'}

$ENV{'KEY_COUNTRY'}

The variable KEY_COUNTRY must be two letters. This is a limitation/restriction of the standard, not ssl-admin. These values align with the
similarly named variables in Easy-RSA. These should not be changed once a CA has been generated, as openssl will throw errors for
mismatched values.

Tip

$ENV{'KEY_CRL_LOC'} should be left alone if your organization does not have a valid URL for CRL distribution. A blank value will cause
errors with openssl.

Once the configuration file has been edited, we can start the program. On first execution, ssl-admin will inspect its certificate store. If a valid
CA and structure is not present there, the user has the ability to import an existing PKI or create a new PKI. As with Easy-RSA, we are
generating a new CA. On some operating systems, the file /etc/openssl.cnf needs to be copied manually to your certificate store root.
This error was not encountered on Mac OS X. On Linux systems, simply copy /etc/openssl.cnf to /etc/ssl-
admin/openssl.cnf. This will be fixed in a later release of ssl-admin.

root@computer:/Library/ssl-admin-> ssl-admin

This program will walk you through requesting, signing,

organizing and revoking SSL certificates.

Looks like this is a new install, installing...

You will first need to edit the /Library/ssl-admin/ssl-admin.conf

default variables. Have you done this? (y/n): y

I need the CA credentials. Would you like to create a new CA key and

certificate now? (y/n): y

Please enter certificate owner's name or ID.

Usual format is first initial-last name (jdoe) or

hostname of server which will use this certificate.

All lower case, numbers OK.

Owner []: Mastering OpenVPN

File names will use Mastering_OpenVPN.

===> Creating private key with 2048 bits and generating request.

Do you want to password protect your CA private key? (y/n): y

Generating RSA private key, 2048 bit long modulus

.....................................+++

............+++

e is 65537 (0x10001)

Enter pass phrase for Mastering_OpenVPN.key:

Verifying - Enter pass phrase for Mastering_OpenVPN.key:

===> Self-Signing request.

Enter pass phrase for /Library/ssl-admin/Mastering_OpenVPN.key:

===> Moving certficate and key to appropriate directory.

===> Creating initial CRL.Using configuration from /Library/ssl-admin/openssl.conf

Enter pass phrase for /Library/ssl-admin/active/ca.key:

ssl-admin installed Wed Oct 1 12:28:23 CDT 2014

OPTIONAL: I can't find your OpenVPN client config. Please copy your config to

/Library/ssl-admin/packages/client.ovpn

===

SSL-ADMIN v1.2.1

===

Please enter the menu option from the following list:

1) Update run-time options:

 Key Duration (days): 3650

 Current Serial #: 01

 Key Size (bits): 2048

 Intermediate CA Signing: NO

2) Create new Certificate Request

3) Sign a Certificate Request

4) Perform a one-step request/sign

5) Revoke a Certificate

6) Renew/Re-sign a past Certificate Request

7) View current Certificate Revokation List

61

8) View index information for certificate.

i) Generate a user config with in-line certifcates and keys.

z) Zip files for end user.

dh) Generate Diffie Hellman parameters.

CA) Create new Self-Signed CA certificate.

S) Create new Signed Server certificate.

q) Quit ssl-admin

Menu Item:

As you can see, ssl-admin is considerably more verbose and interactive than Easy-RSA. Also, ssl-admin automatically generates the initial CRL
for you.

Before the menu was displayed, there was an OPTIONAL warning about OpenVPN configuration. If you provide your client.ovpn
configuration, ssl-admin can automatically package configuration files with embedded certificates or multifile ZIP files. The certificate lines of
the configuration file should be generic:

ca ca.crt

cert client.crt

key client.key

These values will be automatically replaced with inline keys, or files will be renamed according to how the OpenVPN certificates, keys, and
configurations are distributed. Now that we initialized the PKI by creating a root certificate authority key pair, we can start creating our server
and client certificates.

62

OpenVPN server certificates
First, we will create the certificate for use on the OpenVPN server. Menu option S will generate a CSR, a key, and will prompt to sign the
certificate by the CA:

Menu Item: S

Please enter certificate owner's name or ID.

Usual format is first initial-last name (jdoe) or

hostname of server which will use this certificate.

All lower case, numbers OK.

Owner []: Mastering OpenVPN Server

File names will use Mastering_OpenVPN_Server.

Please enter certificate owner's name or ID.

Usual format is first initial-last name (jdoe) or

hostname of server which will use this certificate.

All lower case, numbers OK.

Owner [Mastering_OpenVPN_Server]:

Would you like to password protect the private key (y/n): y

Generating a 2048 bit RSA private key

..................+++

.........+++

writing new private key to 'Mastering_OpenVPN_Server.key'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

===> Serial Number = 01

Using configuration from /Library/ssl-admin/openssl.conf

Enter pass phrase for /Library/ssl-admin/active/ca.key:

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

countryName :PRINTABLE:'ZA'

stateOrProvinceName :PRINTABLE:'Enlightenment'

localityName :PRINTABLE:'Overall'

organizationName :PRINTABLE:'Mastering OpenVPN'

commonName :PRINTABLE:'Mastering OpenVPN Server'

emailAddress :IA5STRING:'root@example.org'

Certificate is to be certified until Sep 28 17:48:20 2024 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

=========> Moving certificates and keys to /Library/ssl-admin/active for production.

Can I move signing request (Mastering_OpenVPN_Server.csr) to the csr directory for archiving?

(y/n): y

===> Mastering_OpenVPN_Server.csr moved.

MENU

Tip

To save space, the menu printed by ssl-admin will be omitted, instead it is replaced with the word MENU.

In the preceding code, we used a certificate CN with spaces to demonstrate ssl-admin behavior. Here, it warned that the spaces would be
replaced with the underscore character, and gave the user the opportunity to change the CN, if needed. Further along, we opted to secure the
private key with a passphrase. Finally, the user was asked if the CSR could be archived.

To show the added server tokens, we again run the openssl command to output certificate details. The following output omits some key
details for brevity:

root@computer:/Library/ssl-admin-> openssl x509 -noout -text -in

active/Mastering_OpenVPN_Server.crt

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 1 (0x1)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=ZA, ST=Enlightenment, L=Overall, O=Mastering OpenVPN, CN=Mastering

OpenVPN/emailAddress=root@example.org

 Validity

 Not Before: Oct 1 17:48:20 2014 GMT

 Not After : Sep 28 17:48:20 2024 GMT

 Subject: C=ZA, ST=Enlightenment, O=Mastering OpenVPN, CN=Mastering OpenVPN

Server/emailAddress=root@example.org

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (2048 bit)

63

 Modulus (2048 bit):

 ...

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 Netscape Cert Type:

 SSL Server

 Netscape Comment:

 ssl-admin (OpenSSL) Generated Server Certificate

 X509v3 Subject Key Identifier:

 FB:A8:91:01:E3:51:5D:A7:29:8C:54:63:9F:22:7F:F8:DE:AB:5A:39

 X509v3 Authority Key Identifier:

 keyid:1F:85:DF:90:5C:3F:73:A9:03:B9:F4:E6:C2:2C:A3:27:CF:5B:44:95

 DirName:/C=ZA/ST=Enlightenment/L=Overall/O=Mastering OpenVPN/CN=Mastering

OpenVPN/emailAddress=root@example.org

 serial:D2:93:32:F0:8E:BC:58:EE

 X509v3 Extended Key Usage:

 TLS Web Server Authentication

 X509v3 Key Usage:

 Digital Signature, Key Encipherment

 Signature Algorithm: sha1WithRSAEncryption

Note that x509v3 Extended Key Usage includes TLS Web Server Authentication. An older standard, nsCertType as
Netscape Cert Type, is also included for backwards-compatibility. Not only is this pertinent for OpenVPN, but ssl-admin was written
as a general x509 CA management utility.

64

OpenVPN client certificates
Client certificates are generated in much the same way as the server certificate. Option 4 on the menu will create a Certificate Signing Request
(CSR) and subsequently sign the CSR:

Menu Item: 4

Please enter certificate owner's name or ID.

Usual format is first initial-last name (jdoe) or

hostname of server which will use this certificate.

All lower case, numbers OK.

Owner []: client1

File names will use client1.

Please enter certificate owner's name or ID.

Usual format is first initial-last name (jdoe) or

hostname of server which will use this certificate.

All lower case, numbers OK.

Owner [client1]:

Would you like to password protect the private key (y/n): n

Generating a 2048 bit RSA private key

..

.....................................+++

.........+++

writing new private key to 'client1.key'

===> Serial Number = 02

=========> Signing request for client1

Using configuration from /Library/ssl-admin/openssl.conf

Enter pass phrase for /Library/ssl-admin/active/ca.key:

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

countryName :PRINTABLE:'ZA'

stateOrProvinceName :PRINTABLE:'Enlightenment'

localityName :PRINTABLE:'Overall'

organizationName :PRINTABLE:'Mastering OpenVPN'

commonName :PRINTABLE:'client1'

emailAddress :IA5STRING:'root@example.org'

Certificate is to be certified until Sep 28 18:05:14 2024 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

=========> Moving certificates and keys to /Library/ssl-admin/active for production.

Can I move signing request (client1.csr) to the csr directory for archiving? (y/n): ===>

client1.csr moved.

MENU

Tip

Later exercises will use up to three client certificates, so it's recommended that you repeat the preceding steps for client2 and client3.

Using the openssl binary to inspect the certificate, we can see that the client1 certificate is missing the server key usage extensions that
existed in the server certificate we created earlier.

root@computer:/Library/ssl-admin-> openssl x509 -noout -text -in active/client1.crt

Certificate:

 Data:

 Version: 1 (0x0)

 Serial Number: 2 (0x2)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=ZA, ST=Enlightenment, L=Overall, O=Mastering OpenVPN, CN=Mastering

OpenVPN/emailAddress=root@example.org

 Validity

 Not Before: Oct 1 18:05:14 2014 GMT

 Not After : Sep 28 18:05:14 2024 GMT

 Subject: C=ZA, ST=Enlightenment, O=Mastering OpenVPN,

CN=client1/emailAddress=root@example.org

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (2048 bit)

 Modulus (2048 bit):

 ...

 Exponent: 65537 (0x10001)

 Signature Algorithm: sha1WithRSAEncryption

 ...

65

This certificate obviously has a simpler structure than the server certificate, and the server key usage parameters are missing.

After creating our CA, server and three client certificates, we're left with the following directory structure:

root@computer:/Library/ssl-admin-> ls -lrth

total 16

-rw-rw-r-- 1 root wheel 541B Oct 1 12:22 ssl-admin.conf

drwxr-x--- 2 root wheel 68B Oct 1 12:24 revoked

-rw-rw---- 1 root wheel 2.5K Oct 1 12:27 openssl.conf

drwxr-x--- 2 root wheel 102B Oct 1 12:28 packages

-r--r--r-- 1 root wheel 531B Oct 1 12:43 ssl-admin.conf.sample

-r--r--r-- 1 root wheel 2.5K Oct 1 12:43 openssl.conf.sample

drwxr-x--- 2 root wheel 340B Oct 1 13:05 prog

drwxr-x--- 2 root wheel 340B Oct 1 13:05 csr

drwxr-x--- 2 root wheel 544B Oct 1 13:05 active

The active directory contains all the certificates and keys that have not been revoked, including the CA certificate and key. As certificates are
revoked, they are moved from active to revoked. In order to utilize the OpenSSL utilities to revoke a certificate, the certificate must be present.
Without the certificate, potentially problematic editing needs to be done manually to the index.txt file. As its name would suggest, the csr
directory contains all of the CSRs. These are generally safe to delete, and are only kept for troubleshooting, or if a certificate needs to be
regenerated.

It is suggested that the administrator leave the contents of the certificate store to the management of the utility. This applies to both ssl-admin
and Easy-RSA.

The prog directory contains the operational files of openssl and the latest CRL. It is not recommended these files be disturbed, as there is
potential to render your PKI unusable if mistakes are made.

Finally, the packages directory will contain all the files you can distribute to your end users: not just the OpenVPN clients, but web server
administrators and so on. Packaging the certificates and keys ensures the end user receives all the necessary files and that they are in the proper
format.

66

Other features
The ssl-admin utility has some other features that someone managing a PKI may find interesting. The index is searchable (option 8), which
shows a given certificate's status. Display of the current CRL is also possible (option 7). ssl-admin is capable of packaging OpenVPN
configuration files with certificates for users both in an inline format (option i), as well as separate files—all contained in a zip file (option z).
These last two options will be discussed further into this book, as we generate server and client configurations.

67

Multiple CAs and CRLs
Easy-RSA 3.0 fairly easily supports multiple root CAs. By creating a separate CA directory under EASYRSA root, and having different vars
files for each, each individual CA can be managed with Easy-RSA.

Currently, ssl-admin does not support multiple root CAs, but creation of intermediate CAs is supported.

With OpenVPN, a single server instance can support multiple root CAs, with client connections that have been signed by either CA being
accepted. To enable such support, the CA certificate for each authorized CA needs to be concatenated together into a single file that can be
called with the --ca OpenVPN option. The same can be done with the certificate revocation list.

Generally, it is not recommended to use multiple CA certificates for a single OpenVPN instance; exceptions could be server, or certificate
authority migration, company or organization acquisitions, and so on.

Under no circumstances would it be ideal to use a web browser root certificate authority for an OpenVPN certificate chain. There is no way to
ascertain who has a certificate, and anyone that falls within that CAs hierarchy would be able to possibly connect to your VPN instance.

Moving forward, there are plans to merge the ssl-admin and Easy-RSA projects into a single, fully capable PKI administrative suite. The
desire is for Easy-RSA 4.0 to realize these migrations using the best features of both utilities.

68

Extra security – hardware tokens, smart cards, and PKCS#11
In this section, we will provide some background information on cryptographic hardware devices. You will learn how to generate a private key
on a hardware token, and how to copy the associated X.509 certificate to the token as well. After that, we will discuss how OpenVPN can find
and use this certificate/private key pair to establish a VPN connection.

Background information
Starting with Version 2.1, OpenVPN supports two-factor authentication by providing PKCS#11 support. Two-factor authentication is based on
the idea that in order to use a system (like a VPN) you need to provide two things:

Something you know, for example, a password
Something you possess, for example, a smart card or hardware token

PKCS#11 is an industry standard for communicating with smart cards or hardware tokens, and there are both open source and commercial
drivers available. The PKCS#11 standard was originally published by RSA Laboratories and is sometimes also referred to as the cryptoki
standard, which stands for CRYPtographic TOKen Interface.

Apart from the terms hardware token and smart card, the term Hardware Security Module (HSM) is also often used for two-factor
authentication. In this section, we will mostly use the term hardware token. The main difference between hardware tokens and smart cards is the
form factor: a hardware token usually comes as a USB device, whereas a smart card looks like an ATM card or credit card. In order to use a
smart card, a special card reader is required, which is sometimes integrated into laptops and even some desktop computers. Some countries issue
national e-ID cards, which typically classify as smart cards.

An HSM is more often an appliance that can securely store and manage cryptographic keys, often providing hardware acceleration as well for
speeding up encryption and decryption.

A hardware token, smart card or HSM, is typically a small device with an embedded chip on it. This embedded chip runs a miniature operating
system (often referred to as Card OS), which is responsible for securely generating, storing, and managing SSL private keys. Most hardware
tokens are also capable of storing other information, such as SSL certificates, so that a valid certificate/private key pair can be stored securely
on a single device.

Supported platforms
The major difficulty when using two-factor authentication is the software support on different platforms. While most hardware token and smart
card vendors provide operating system drivers for Microsoft Windows, there are far fewer cards and tokens supported on Linux or even Mac OS
X. Note that this is not related to OpenVPN itself: if a particular hardware token is supported by the operating system you are using, and a
PKCS#11 driver is provided then, in general, OpenVPN can make use of that hardware token or smart card.

For this book, we used an Aladdin eToken Pro 72K USB hardware token. (Aladdin Systems was bought by SafeNet (http://www.safenet.com).
However, just recently SafeNet merged with Gemalto.) This hardware token is supported only using the closed-source SafeNet Authentication
Client, which is available for Microsoft Windows, Mac OS X, and Linux.

Older versions of these tokens had the advantage that they could use either the paid, closed-source driver from SafeNet or the free, open source
driver from the OpenSC project (found nowadays at https://github.com/OpenSC/OpenSC/wiki). Unfortunately, these older tokens can no longer
be purchased, and the current hardware tokens from SafeNet use a different card OS, that is not supported by OpenSC.

The general process and concept apply to most hardware tokens you may use. These older devices were used simply for testing and
demonstration purposes. Many vendors utilize a mobile application, usually on a user's smart phone, as the hardware token. SafeNet also has
such a product: MobilePASS.

Also, the drivers and tools from the OpenSC project are not as mature as the software from commercial software vendors.

Other vendors of smart cards and hardware tokens are Aktiv Co and Feitian (with open source support).

Please note that OpenVPN depends purely on a working PKCS#11 driver. When selecting a hardware token, it will be important to verify
whether the device is supported on the platforms needed, not if it will work with OpenVPN itself. Also, note that it is not required (or even
recommended!) to use a hardware token on an OpenVPN server.

Initializing a hardware token
It is assumed that either the Aladdin pkiclient or SafeNet AuthenticationClient is installed and that the hardware token is
recognized by the driver software. If the eToken has already been initialized, then skip this step.

First, bring up the eToken client properties window, and click on Initialize eToken. This will bring up the following dialog box:

69

http://www.safenet.com
https://github.com/OpenSC/OpenSC/wiki

Fill in the token password and administrator password, uncheck the Token Password must be changed on first logon checkmark, and click on
Start.

All contents on the token will now be destroyed and the eToken will be initialized with the new token and administrator passwords.

Generating a certificate/private key pair
When using a hardware token, the process of generating a certificate and private key pair is a little different compared to using the ssl-admin or
Easy-RSA tools. With the ssl-admin or Easy-tools, the private key, certificate request, and X.509 certificate are generated in a single step. With
a hardware token, we first need to generate a private key on the token.

Using this private key, we then need to create the CSR. This CSR is then signed by the CA, which results in an X.509 certificate. This
certificate is then written back to the token. The ssl-admin and Easy-RSA tools actually follow the same process, but they hide the CSR file
from the user.

Generating a private key on a token
In order to generate a private key on an eToken, we need the pkcs11-tool command, which is part of the OpenSC package. The OpenSC
package is available for Microsoft Windows, Mac OS X, and Linux. The pkcs11-tool command provides an interface to hardware tokens
using a PKCS#11 driver. The PKCS#11 driver included with the Aladdin/SafeNet driver software is libeTPkcs11.so (Linux and Mac OS
X) or eTPkcs11.dll (Windows). The following command was issued on a 64-bit Linux machine and it generates a 2048-bit RSA key
identified using the label movpn and the ID 20141001. As we are generating a private key, it is mandatory to log in to the token:

pkcs11-tool --module libeTPkcs11.so \

 --keypairgen --key-type rsa:2048 \

 --label "movpn" --id 20141001 --login

Using slot 0 with a present token (0x0)

Logging in to "Mastering OpenVPN".

Please enter User PIN: [enter Token password]

Key pair generated:

Private Key Object; RSA

 label: movpn

 ID: 20141001

 Usage: decrypt, sign, unwrap

Public Key Object; RSA 2048 bits

 label: movpn

 ID: 20141001

 Usage: encrypt, verify, wrap

It will take some time to generate a 2048-bit key on the hardware token, during which the red light on the hardware token is off. Afterwards the
light will come back on again.

The output of the command above tells us that an RSA private key was generated, along with a public 2048-bit RSA public key. This is not the
same as an SSL certificate. In order to generate an SSL or X.509 certificate, we first need to generate a certificate request.

Generating a certificate request

70

We need to use the OpenSSL engine engine_pkcs11 to generate a certificate request using a private key from the hardware token. The
engine_pkcs11 engine is best used with a custom openssl.cnf file. We first create this file:

openssl_conf = openssl_def

[openssl_def]

engines = engine_section

[engine_section]

pkcs11 = pkcs11_section

[pkcs11_section]

engine_id = pkcs11

dynamic_path = /usr/lib64/openssl/engines/engine_pkcs11.so

MODULE_PATH = /usr/lib64/libeTPkcs11.so

init = 0

[req]

distinguished_name = req_distinguished_name

[req_distinguished_name]

This file was generated for a 64-bit CentOS Linux system. On other systems, the paths and names of the drivers will be different. Note that the
statements in the openssl.cnf file are case sensitive!

We now generate a certificate request with the subject /CN=movpn, using the following openssl command:

$ openssl req -engine pkcs11 -keyform engine -key 20141001 \

 -new -text -out movpn.csr -config openssl.cnf \

 -subj "/CN=movpn"

engine "pkcs11" set.

PKCS#11 token PIN: [enter Token password]

The command produces no further output when successful. There should now be a movpn.csr file, which needs to be signed by the CA set up
earlier in this chapter. It is assumed that the signed certificate will be named movpn.crt.

Writing an X.509 certificate to the token
OpenVPN expects the X.509 certificate to be present on the hardware token. Therefore, we must first write the X.509 certificate from the
previous step to the eToken.

First, convert the signed certificate to the DER format:

$ openssl x509 -in movpn.crt -outform der -out movpn.der

Next we write the DER file to the token:

$ pkcs11-tool --module libeTPkcs11.so \

 --write-object movpn.der --type cert \

 --label movpn --id 20141001 --login

Using slot 0 with a present token (0x0)

Logging in to "Mastering OpenVPN".

Please enter User PIN: [enter Token password]

Created certificate:

Certificate Object, type = X.509 cert

 label: movpn

 ID: 20141001

We need to verify that the IDs of the private key and certificate match:

$ pkcs11-tool --module libeTPkcs11.so --login -O

Using slot 0 with a present token (0x0)

Logging in to "Mastering OpenVPN".

Please enter User PIN: [enter Token password]

Private Key Object; RSA

 label: movpn

 ID: 20141001

 Usage: decrypt, sign, unwrap

Public Key Object; RSA 2048 bits

 label: movpn

 ID: 20141001

 Usage: encrypt, verify, wrap

Certificate Object, type = X.509 cert

 label: movpn

 ID: 20141001

The token is now ready to be used with OpenVPN.

71

Getting a hardware token ID
In order to use a certificate and private key from a hardware token, you must first find out the hardware token ID that OpenVPN expects. This is
done using the --show-pkcs11-id option:

$ openvpn --show-pkcs11-ids /usr/lib64/libeTPkcs11.so

The following objects are available for use.

Each object shown below may be used as parameter to

--pkcs11-id option please remember to use single quote mark.

Certificate

 DN: CN=movpn

 Serial: 01

 Serialized id: SafeNet\x20Inc\x2E/eToken/00a3659e/Mastering\x20OpenVPN/20141001

The serialized ID consists of the following:

The name of the PKCS#11 driver (SafeNet Inc)
The name of the product (eToken)
The serial number of the token (00a3659e)
The name of the token (Mastering OpenVPN)
The ID of the certificate and private key on the token (20141001)

The label of the certificate or private key is not used, but it is a good practice to keep them in sync with each other as well.

Using a hardware token with OpenVPN
We are now finally ready to use the hardware token in OpenVPN. In order to use it, we replace the lines in the OpenVPN configuration file:

cert myclient.crt

key myclient.key

With the options pkcs11-providers and pkcs11-id:

pkcs11-providers /usr/lib64/libeTPkcs11.so

pkcs11-id 'SafeNet\x20Inc\x2E/eToken/00a3659e/Mastering\x20OpenVPN/20141001'

72

Summary
In this chapter, we discussed the tools and methods to create a root certificate authority, and the underlying server and client certificates.
Additionally, the concept of PKCS#11 was covered, though the underlying technology is ever evolving. Now, you should have a full PKI and
the tools to extend it.

The next chapter will introduce a routed VPN setup. Use of the tun network device and the layer 3 requirements for a working connection will
be also be discussed.

73

Chapter 4. Client/Server Mode with tun Devices
The most commonly used deployment model for OpenVPN is a single server with multiple remote clients capable of routing IP traffic. We refer
to this deployment model as the client/server mode with tun devices.

In this chapter, we start off with a basic client/server setup. We will add more features as we go along, and some advanced examples on how to
set up OpenVPN in client/server tun mode are given at the end of this chapter. In the next chapter, we will explain how to integrate a
client/server tun-based setup in an existing network setup, including topics such as Windows file sharing and policy based routing.

The following topics will be covered in this chapter:

Setting up the Public Key Infrastructure
Initial setup of the client/server mode
Adding extra security with production-level configuration files
Routing and server-side routing
Client-specific configuration using CCD files
Client-side routing
Redirecting the default gateway
The OpenVPN status file
The OpenVPN management interface
Session key renegotiation
Using IPv6
Proxy ARP
Handing out public IP addresses

Understanding the client/server mode
The client/server mode was first introduced with OpenVPN 2.0. In this mode, the server is a single OpenVPN process to which multiple clients
can connect. Each authenticated and authorized client is assigned an IP address from a pool of IP addresses that the OpenVPN server manages.
Clients cannot communicate directly with one another. All traffic flows via the server, which has both advantages and disadvantages.

The advantages are as follows:

Control: The VPN server administrator can control which traffic is allowed to flow between clients. By default, no traffic is allowed to
flow between clients. However, using either the OpenVPN option client-to-client or by using clever firewall and routing rules,
it is possible to allow clients to communicate with each other.
Ease of deployment: It is much easier to set up a single server that can be reached by many different clients than it is to ensure
connectivity between a multitude of clients, each with their own network and firewall configurations.

The disadvantages are as follows:

Scalability: As all traffic is flowing from client to server (and vice versa), the server can quickly become the bottleneck in large scale
VPN setups.
Performance: As all traffic between two clients (clients A and B) needs to flow from client A to the server and then from the server to
client B, the performance of this type of VPN will always be lower when compared to a direct client-to-client connection.

The most common deployment scenario for this mode is an OpenVPN server at a corporate site that the various VPN clients connect to. Clients
may include satellite offices, road warriors, people working at home, as well as smart phone and tablet users.

This deployment model covers 95 percent of the typical requirements for VPNs, and is preferable over more complicated setups using advanced
features such as bridging. Only if there are specific requirements to route non-IP traffic (for example, legacy IPX traffic) or if there is a need to
form a single network broadcast domain, then this deployment model will not suffice.

74

Setting up the Public Key Infrastructure
In the client/server mode, OpenVPN is configured using a Public Key Infrastructure (PKI) with X.509 certificates and private keys. Before
we can set up a client/server VPN, we need to set up this PKI first. The PKI comprises of the CA, the private keys, and the certificates (public
keys) for both the client and server. In Chapter 3, PKIs and Certificates, we will discuss in detail how to set up such a PKI. This chapter builds
upon the certificates and keys generated in that chapter.

First, we copy the certificate and keys to a separate location. In general, it is a good security practice to keep the PKI files in a separate location,
if possible even on a separate computer. Special care should be taken to protect the ca.key file, as the entire security of your PKI is dependent
on this file. If the ca.key file is compromised in any way, the entire PKI is rendered insecure, and should be abandoned. In the following
commands, it is assumed that the PKI files are generated using ssladmin and are stored in a directory <PKI_DIR>, where <PKI_DIR>
represents a real directory on the system. Execute the following commands to copy over the necessary PKI files for the server:

[root@server] # mkdir -p /etc/openvpn/movpn

[root@server] # chmod 700 /etc/openvpn/movpn

[root@server] # cd /etc/openvpn/movpn

[root@server] # PKI=<PKI_DIR>/ssladmin/active

[root@server] # cp -a $PKI/ca.crt movpn-ca.crt

[root@server] # cp -a $PKI/Mastering_OpenVPN_Server.crt server.crt

[root@server] # cp -a $PKI/Mastering_OpenVPN_Server.key server.key

We also need to generate a Diffie-Hellman (DH) parameter file that is required for VPN session keys. The session keys are ephemeral or
temporary keys and are generated when the connection between client and server is first set up. To ensure optimal security, the ephemeral keys
are regenerated during the session at fixed intervals. The default key interval for OpenVPN is one hour, but this can be tuned using various
OpenVPN options. This will be explained later in this chapter in the section Session key renegotiation.

To generate a DH parameter file, execute the following commands:

[root@server] # cd /etc/openvpn/movpn

[root@server] # openssl dhparam -out dh2048.pem 2048

Generating DH parameters, 2048 bit long safe prime, generator 2

This is going to take a long time

........+..

..+......

In this example, we choose a DH key size of 2048 bits, which is the recommended size. You may also use larger DH key sizes, but it will make
the initial connection process for each OpenVPN client slower. We are now ready to set up and start the OpenVPN server.

75

Initial setup of the client/server mode
In order to set up a basic OpenVPN server, we first create a server configuration file using the following steps:

1. Create the following file

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody # use ‘group nogroup’ on Debian/Ubuntu

verb 3

daemon

log-append /var/log/openvpn.log

2. Then, save it as movpn-04-01-server.conf. A detailed explanation of each of the configuration lines will be given later.
3. Start the OpenVPN server:

[root@server] # openvpn --config movpn-04-01-server.conf

4. The command will not produce any output on the command line, as all output is redirected to the log file /var/log/openvpn.log.
Check this file for OpenVPN’s startup message details:

OpenVPN 2.3.2 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [eurephia]

[MH] [IPv6] built on Sep 12 2013

Enter Private Key Password:

WARNING: this configuration may cache passwords in memory -- use the auth-nocache option to

prevent this

TUN/TAP device tun0 opened

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tun0 up mtu 1500

/sbin/ip addr add dev tun0 10.200.0.1/24 broadcast 10.200.0.255

GID set to nobody

UID set to nobody

UDPv4 link local (bound): [undef]

UDPv4 link remote: [undef]

Initialization Sequence Completed

5. Please note that normally each log file entry starts with a timestamp. For the sake of clarity, this timestamp has been removed.
6. Next, create the client configuration file:

client

proto udp

remote openvpnserver.example.com

port 1194

dev tun

nobind

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/client1.crt

key /etc/openvpn/movpn/client1.key

Save it as movpn-04-01-client.conf.
7. Transfer the PKI files to the client using a secure channel, for example, using the scp command:

[root@client]# mkdir -p /etc/openvpn/movpn

[root@client]# chmod 700 /etc/openvpn/movpn

[root@client]# cd /etc/openvpn/movpn

[root@client]# PKI_HOST=openvpnserver.example.com

[root@client]# PKI=<PKI_DIR>/ssladmin/active

[root@client]# scp root@$PKI_HOST:$PKI/ca.crt movpn-ca.crt

[root@client]# scp root@$PKI_HOST:$PKI/client1.crt client1.crt

[root@client]# scp root@$PKI_HOST:$PKI/client1.key client1.key

8. Start the OpenVPN client:

[root@client]# openvpn --config movpn-04-01-client.conf --suppress-timestamps

76

OpenVPN 2.3.2 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [eurephia]

[MH] [IPv6] built on Sep 12 2013

WARNING: No server certificate verification method has been enabled. See

http://openvpn.net/howto.html#mitm for more info.

UDPv4 link local: [undef]

UDPv4 link remote: [AF_INET]openvpnserver:1194

[Mastering OpenVPN Server] Peer Connection Initiated with [AF_INET]openvpnserver:1194

TUN/TAP device tun0 opened

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tun0 up mtu 1500

/sbin/ip addr add dev tun0 10.200.0.2/24 broadcast 10.200.0.255

Initialization Sequence Completed

9. The timestamps are again missing, but this time they are suppressed using the OpenVPN option suppress-timestamps, as
specified on the command line.

10. After the connection has come up, check for the following message:

Initialization Sequence Completed

11. You can verify that the connection is functioning correctly by pinging the VPN address of the server:

Detailed explanation of the configuration files
As this is the first client/server example, a detailed explanation of the server and client configuration files is in order. The server configuration
file contains the following lines:

proto udp: While this is the default protocol, it is wise to explicitly list it in the configuration file to avoid any confusion.
port 1194: This is the local port that OpenVPN will listen on. The default value is 1194, but any valid and available port number can
be used.
dev tun: This specifies the name of the tun device that will be used for the server. By not adding a number behind the tun, we instruct
OpenVPN to open a new tun device. This new device will be assigned the first available number in the system kernel, starting at 0 (tun0,
tun1, tun2 and so on). For Windows servers, it is advisable to keep this line as is. If a specific Windows device needs to be used, then
the option dev-node is required.
server 10.200.0.0 255.255.255.0: The server statement puts OpenVPN in server mode. The IP subnet and subnet mask
specify the subnet and mask to use for the VPN server and clients. The VPN server is assigned the first address, which in this case is
10.200.0.1. The first client is assigned the address 10.200.0.2 (because we are using topology subnet). The server
statement for this configuration is internally expanded as follows:

mode server

tls-server

push “topology subnet”

ifconfig 10.200.0.1 255.255.255.0

ifconfig-pool 10.200.0.2 10.200.0.254 255.255.255.0

push “route-gateway 10.200.0.1”

This is taken from the OpenVPN manual page at https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage. If these
configuration lines are used instead of the macro server, the same configuration is used.

Note

The expansion includes push “topology subnet” because we have also specified topology subnet in the configuration
file. Without this line, the expansion would not have occurred.

topology subnet: This specifies the topology for the VPN. The current default topology is net30, in which the server and each
client are assigned a separate miniature /30 subnet space. More details on the use of topology subnet versus topology net30 are given in
the following section.
persist-tun and persist-key: Instruct OpenVPN to neither reopen the tun device, nor generate new keying material whenever

77

https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage

the tunnel is restarted. These options are particularly useful in combination with user nobody, as the user nobody normally does
not have the access rights to open a new tun interface.
keepalive 10 60: This is used to make sure that the VPN connection remains up, even if there is no traffic flowing over the tunnel.
The keepalive statement is a macro for the ping and ping-restart commands. The statement keepalive 10 60 in a
server-side configuration expands to:

ping 10

ping-restart 120

push “ping 10”

push “ping-restart 60”

The preceding code means:
Send a ping message to each client every 10 seconds
Restart the connection if a client does not respond within 120 seconds (2 * 60 = 120)
Push the statements ping 10 and ping-restart 60 to each client

dh <path to Diffie Hellman file>: This specifies the path to the DH file that is required for the OpenVPN server. Without
this file, the server cannot establish a secure TLS connection with the clients. It is advisable to use an absolute path for this file (as well
as the other certificate and private key paths).
ca <path to CA file>: This specifies the path to the CA file. The CA file needs to contain the CA certificate (or even set of
certificates) that was used to sign the client certificates. It does not necessarily have to be the same CA as the one that was used to sign
the server certificate, although in our PKI setup we used the same CA. It is advisable to use an absolute path for this file (as well as the
other certificate and private key paths).
cert <path to X.509 certificate file>: This specifies the path to the server X.509 public certificate file. This certificate
is needed by the OpenVPN server, even if the clients are connection without using certificates. It is advisable to use an absolute path for
this file (as well as the other certificate and private key paths).
key <path to private key file>: This specifies the path to the server private key file. This private key file is needed by the
OpenVPN server, even if the clients are connecting without using certificates or private keys. This file needs to be readable by the root
(or administrator) user only, as anyone with read access to private keys can decrypt OpenVPN traffic. Note that OpenVPN will read this
file before dropping user privileges. It is advisable to use an absolute path for this file (as well as the other certificate and private key
paths).
user nobody and group nobody: This instructs OpenVPN to drop to Unix user nobody and group nobody after the
connection has come up. This further enhances security, as an attack on the tunnel will less likely result in a root exploit. Note that on
Debian/Ubuntu the group nogroup is used.
verb 3: This sets the verbosity level to the default value of 3. Increase this number to view more detailed output of the OpenVPN
process. If the verbosity is set to 0, then hardly any logging output is produced. However, this is not recommended.
daemon: This tells OpenVPN to daemonize itself, which means that the OpenVPN process will keep running even after the terminal
window in which OpenVPN was started is closed.
log-append <path to log file>: This specifies the path to the server log file. By using log-append instead of log
<path to file>, we prevent OpenVPN from truncating the log file each time it starts. For this file, it is also advisable to use an
absolute path.

The client configuration file contains:

client: This puts OpenVPN into client mode. It instructs OpenVPN to connect to the remote server and to pull and process
configuration parameters from the server after a successful connection has been made. The client statement is internally expanded as
follows:

tls-client

pull

proto udp: This specifies the protocol to use. While this is the default protocol, it is wise to explicitly list it in the configuration file
to avoid any confusion.
remote openvpnserver.example.com: This specifies the name of the VPN server to connect to. The name can be either a
Fully qualified domain name (FQDN) or an IPv4 address. Later in this chapter, we will see how to connect to an IPv6-based VPN
server.
port 1194: This is the port that the OpenVPN client will use to connect to the server. The default value is 1194, but any valid and
available port number can be used.

Note

There are multiple ways to specify a remote address and port for the VPN server. For example, it is also possible to use remote
openvpnserver.example.com:1194.

dev tun: This specifies the name of the tun device that will be used for the server. By not adding a number behind the tun, we instruct
OpenVPN to open a new tun device. This new device will be assigned the first available number in the system kernel, starting at 0 (tun0,
tun1, tun2 and so on). For Windows servers, it is advisable to keep this line as is. If a specific Windows device needs to be used, then
the option dev-node is required.
nobind: This instructs the OpenVPN client not to bind to (and not listen on) the port specified using port. Instead, the OpenVPN
client will use a port in the anonymous port range, which is typically 1024-65335.
ca <path to CA file>: This specifies the path to the CA file. This CA file needs to contain the CA certificate (or even set of
certificates) that was used to sign the server certificate. It does not necessarily have to be the same CA as the one that was used to sign
the client certificate, although we used the same CA in our PKI setup. On Linux/Unix it is advisable to use an absolute path for this file
(as well as the other certificate and private key paths).
cert <path to X.509 certificate file>: This specifies the path to this client’s X.509 public certificate file. It is possible
to configure OpenVPN to use username/password authentication instead of certificates, but this is considered less secure. On
Linux/Unix, it is advisable to use an absolute path for this file (as well as the other certificate and private key paths).
key <path to private key file>: This specifies the path to the client private key file. This file needs to be readable by the

78

root (or administrator) user only, as OpenVPN will read this file before dropping user privileges. On Linux, it is advisable to use an
absolute path for this file (as well as the other certificate and private key paths).

Note that we did not specify daemon or log-append for the client configuration, as in most cases a wrapper application will launch the
openvpn process. This wrapper application will then control the logging of OpenVPN. The most commonly used wrapper applications are:

Operating system Wrapper applications

Windows OpenVPN-GUI.exe (part of OpenVPN installer package)

Mac OS X Tunnelblick or Viscosity

Linux NetworkManager (with OpenVPN plugin)

Topology subnet versus topology net30
OpenVPN supports several topologies in tun mode:

net30 (default, may change with v2.4)
subnet
p2p

To start off with the last one, topology p2p is hardly ever used anymore and was the first method to assign a single IP address to a VPN client.
However, it only works on Linux and Unix derivatives, and hence was never very widely used.

Topology net30 is the current default. In this mode, OpenVPN sets up a Point-to-Point network interface for each client (and for the server) and
it assigns a /30 subnet to each. This means that the server and each client are assigned a block of four IP addresses. In the server configuration
file, the server 10.200.0.0 255.255.255.0 was specified. With topology net30, this causes OpenVPN to assign the following
IP blocks:

The OpenVPN server is assigned from 10.200.0.0 to 10.200.0.3.
The first client is assigned from 10.200.0.4 to 10.200.0.7.
The second client is assigned from 10.200.0.8 to 10.200.0.11 and so on. Each /30 subnet consist of four addresses; for the first client,
these addresses are as follows:

10.200.0.4: This is the /30 subnet network address. Each subnet is normally required to have such an address associated with it.
10.200.0.5: This is the virtual endpoint address. This address is required for OpenVPN to function, but it cannot actually be used,
and is not even pingable.
10.200.0.6: This is the client VPN IP address.
10.200.0.7: This is the /30 subnet broadcast address. Each subnet is required to have such a broadcast address associated with
it.

As you can see, this is not a very efficient method of assigning IP addresses—for each VPN client, four IP addresses are assigned. For small
VPN setups, this method works fine, but this method does not scale for a server with more than 100 clients connected.

To overcome this problem, the topology subnet mode was introduced. It allows OpenVPN to assign a single IP address to all clients,
which makes it much easier to manage a large-scale VPN. There are some issues with server-side routing (for more details, see the Routing and
server-side routing section later in this chapter) that have prevented this topology mode from becoming the default, but it is expected that as of
Version 2.4 this will be the default topology mode.

79

Adding extra security
The initial set of configuration files is a good starting point for a client/server deployment. However, for a production-level system, we want to
add more security. Security can be enhanced in two ways:

By adding tls-auth keys
By checking the extended key usage attributes of the certificates used

Using tls-auth keys
In the client/server mode, OpenVPN will attempt to establish a TLS control channel for each client that tries to connect. Setting up a TLS
control channel is resource consuming, which makes OpenVPN susceptible to denial-of-service attacks: an attacker could launch a multitude of
misconfigured clients that all try to connect to the OpenVPN server. For each of these, the OpenVPN server would attempt to set up a TLS
connection, which will effectively lead to a denial of service for well-configured clients. This is especially true when OpenVPN is running using
proto udp (the recommended default). UDP traffic is connectionless, which means that for each new UDP packet that the server receives, it
must verify if it is a valid OpenVPN packet.

To address this possible vulnerability, OpenVPN introduced an extra authentication layer to the TLS control channel using the tls-auth
option. This TLS authentication must be done using a pre-shared key, as the server does not yet know if a valid client is attempting to connect.
The pre-shared keys used for this are the exact same keys as the keys used in point-to-point mode, as described in Chapter 2, Point-to-point
Mode.

Generating a tls-auth key
To generate a tls-auth key, we use the same command as described in Chapter 2, Point-to-point Mode:

[root@server]# openvpn --genkey --secret /etc/openvpn/movpn/ta.key

Just like the client’s private key file, this file needs to be copied to each client using a secure channel, or it needs to be included in a secure
client configuration package:

[root@client]# cd /etc/openvpn/movpn

[root@client]# scp root@openvpnserver:/etc/openvpn/movpn/ta.key .

Checking certificate key usage attributes
When X.509 certificates are generated, special Extended Key Usage (EKU) attributes can be added to the certificate. This allows us to specify
a purpose for the certificate, for example as a server-only certificate or a client-only certificate. Certificates used by secure websites make use of
the same EKU attributes.

The easy-rsa scripts and the ssladmin tool set the EKU attributes by default when generating a server certificate or a non-server (client)
certificate. To check the EKU attributes of a certificate, use the following commands:

$ openssl x509 -text -noout -in server.crt | \

 grep -C 1 “Key Usage”

 X509v3 Extended Key Usage:

 TLS Web Server Authentication

 X509v3 Key Usage:

 Digital Signature, Key Encipherment

This tells us that the server.crt certificate can be used only for server authentication.

Older certificates may not have these EKU attributes set, but instead use the (deprecated) Netscape Cert Type attribute. The easy-rsa
scripts and the ssladmin tool set this attribute as well:

$ openssl x509 -text -noout -in server.crt | \

 grep -C 1 “Netscape Cert”

 Netscape Cert Type:

 SSL Server

However, this certificate can only be set for server-side certificates.

OpenVPN security can be increased by checking these attributes. For this, we use the option remote-cert-tls.

The option remote-cert-tls client instructs the OpenVPN server to only allow connections from VPN clients that have a certificate
with the X.509 EKU attribute set to TLS Web Client Authentication.

This prevents a hacker from setting up a rogue OpenVPN server using a client certificate.

Similarly, for the client, the option remote-cert-tls server instructs the OpenVPN client to only allow connections to a VPN server
that has a certificate with the X.509 EKU attribute set to TLS Web Server Authentication.

This prevents a malicious client from setting up a rogue OpenVPN server to attract connections from other VPN users.

It is also possible to check for the Netscape Cert Type attribute. As this is an attribute of the server certificate, the OpenVPN client needs

80

to check this attribute when connecting. For this, the option ns-cert-type server can be used. Preferably, the option remote-cert-
tls should be used.

81

Basic production-level configuration files
We extend the previous client and server configuration files to use the newly created tls-auth key. We do this by adding a line to the
configuration file movpn-04-01-server.conf, as well as the second security-enhancing option:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

Note

Note that the order of the statements in this configuration file is random. The remote-cert-tls and tls-auth lines could have been
added at any point in the file.

This server configuration file is a basic server configuration file that we will reuse throughout this chapter and others. Save it as basic-udp-
server.conf so that we can reuse it later.

We add two similar lines to the client configuration file movpn-04-01-client.conf:

client

proto udp

remote openvpnserver.example.com

port 1194

dev tun

nobind

remote-cert-tls server

tls-auth /etc/openvpn/movpn/ta.key 1

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/client1.crt

key /etc/openvpn/movpn/client1.key

Save it as basic-udp-client.conf.

The second parameter to the tls-auth option is the so-called direction of the key. OpenVPN supports the use of directional keys, that is,
different keys are used for incoming versus outgoing data. This further enhances security. The direction flag needs to be set to 0 on one end
and to 1 on the other end. In the client/server mode, this means that the server has the parameter 0 for the direction, and all clients have the
direction parameter set to 1.

When we start the OpenVPN server, we can see that the TLS control channel is now protected using a static key:

[root@server]# openvpn --config basic-udp-server.conf --suppress-timestamps

OpenVPN 2.3.2 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [eurephia] [MH]

[IPv6] built on Sep 12 2013

Enter Private Key Password:

WARNING: this configuration may cache passwords in memory -- use the auth-nocache option to

prevent this

Control Channel Authentication: using ‘/etc/openvpn/movpn/ta.key’ as a OpenVPN static key file

TUN/TAP device tun0 opened

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tun0 up mtu 1500

/sbin/ip addr add dev tun0 10.200.0.1/24 broadcast 10.200.0.255

GID set to nobody

UID set to nobody

UDPv4 link local (bound): [undef]

UDPv4 link remote: [undef]

Initialization Sequence Completed

82

Similarly, when we start the OpenVPN client we see:

[root@client]# openvpn --config basic-udp-client.conf --suppress-timestamps

OpenVPN 2.3.2 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [eurephia] [MH]

[IPv6] built on Sep 12 2013

Control Channel Authentication: using ‘/etc/openvpn/movpn/ta.key’ as a OpenVPN static key file

UDPv4 link local: [undef]

UDPv4 link remote: [AF_INET]openvpnserver:1194

[Mastering OpenVPN Server] Peer Connection Initiated with [AF_INET]openvpnserver:1194

TUN/TAP device tun0 opened

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tun0 up mtu 1500

/sbin/ip addr add dev tun0 10.200.0.2/24 broadcast 10.200.0.255

Initialization Sequence Completed

TCP-based configuration
The default protocol that OpenVPN uses is the UDP protocol. It is very simple to create TCP-based versions based on the configuration files
created previously. In both client and server configuration files, change the line proto udp to proto tcp. The entire TCP-based server
configuration file is listed here:

proto tcp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

Save this configuration file as basic-tcp-server.conf.

Similarly, for the client configuration file:

client

proto tcp

remote openvpnserver.example.com

port 1194

dev tun

nobind

remote-cert-tls server

tls-auth /etc/openvpn/movpn/ta.key 1

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/client1.crt

key /etc/openvpn/movpn/client1.key

Save it as basic-tcp-client.conf.

Configuration files for Windows
The basic configuration files for the Windows platform are slightly different from the ones for the Linux/Unix or Mac OS platforms. On the
Windows platform, the Openvpn-GUI.exe wrapper is used, which expects that all configuration files are stored in the directory
C:\Program Files\OpenVPN\config or a subdirectory thereof. The name of the directory Program Files may be different for
other languages. In all languages, the Windows environment variable %PROGRAMFILES% will point to the proper location.

Thus, the basic UDP and TCP configuration files are actually slightly shorter. Create the UDP client configuration file:

client

proto udp

remote openvpnserver.example.com

port 1194

dev tun

83

nobind

remote-cert-tls server

tls-auth ta.key 1

ca movpn-ca.crt

cert client1.crt

key client1.key

Save it as basic-udp-client.ovpn so that we can re-use it later in this book.

Similarly, create the client configuration:

client

proto tcp

remote openvpnserver.example.com

port 1194

dev tun

nobind

remote-cert-tls server

tls-auth ta.key 1

ca movpn-ca.crt

cert client1.crt

key client1.key

Save it as basic-tcp-client.ovpn.

84

Routing and server-side routing
A VPN is only truly useful when the VPN clients have access to server-side resources. In order to access these resources, routing is needed in
most cases. OpenVPN has many options to automatically set up and tear down extra routes whenever a client connects or disconnects.

It should be stated that most OpenVPN troubleshooting issues are related to routing. Setting up a VPN connection is one thing, getting network
traffic to flow properly is another. This often has little to do with OpenVPN itself, but more with the routing tables and firewall rules on both
client and server side.

The most common layout for accessing resources on the server-side network is depicted here:

The server-side LAN is 192.168.122.0/24. The resources that the VPN clients need to access are located on this subnet. Thus, the server needs
to instruct the VPN clients that an extra route needs to be set. This is done using a push option, where the route configuration is pushed to the
client. It could also be achieved by adding the route to the client configuration file itself, but this does not scale well. This is because for each
new server-side network route, all client configuration files would need to be updated.

We start out with the basic-udp-server.conf file, and add one line:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

push “route 192.168.122.0 255.255.255.0”

We save it as movpn-04-03-server.conf and we start the OpenVPN server using this configuration file. This time, we use a Windows 7
64-bit Professional machine as the OpenVPN client, on which the X86_64 Version of OpenVPN 2.3.4-I004 is installed. Copy over the
following files to the Windows machine:

basic-udp-client.ovpn

movpn-ca.crt

client1.crt

client1.key

Take and place them in C:\Program Files\OpenVPN\config (or %PROGRAMFILES%\config).

Launch the OpenVPN GUI application, select the configuration basic-udp-client and click on Connect:

85

Once the connection is successfully established, the OpenVPN GUI icon turns green and connection information is shown when hovering over
the icon:

We can now verify that the VPN connection to the server is working by opening a command shell and pinging the server:

After we verify that we can reach the OpenVPN server, we need to ensure that the OpenVPN server is forwarding IP traffic and we need to add
an extra route on the server side gateway to ensure that the VPN traffic is routed correctly back via the VPN server. Without this route, the
machines on the server-side network will now know where the VPN traffic with IP addresses 10.200.0.0/24 is coming from, and will most
likely wrongly route or drop the packets:

[root@server]# sysctl -w net.ipv4.ip_forward=1

[router]# ip route add 10.200.0.0/24 via 192.168.122.1

Now, we check the routing table on the client side, and we verify that we can reach a machine on the server-side LAN:

86

The first part of the output shows that multiple routes for the VPN subnet 10.200.0.0/24 were added to the routing tables, including a route
for the pushed network 192.168.122.0/24. Note the last column in the output, which shows the route metric. Windows calculates a
metric (286 in this case), but this can be overruled using the right route statements. The route added using push route 192.168.122.0
255.255.255.0 has a lower metric as the OpenVPN default metric of 30 was specified.

Special parameters for the route option
Analogous to what is explained in Chapter 2, Point-to-point Mode the configuration statement push route <network> <netmask>
[vpn_gateway] [metric] is vital in this setup. The route option accepts up to four parameters, two mandatory and two optional. It is
the third parameter which plays an important role in this setup. The word vpn_gateway is a special OpenVPN keyword, and it specifies the
VPN remote endpoint address. Normally, this keyword does not have to be specified, unless it is also necessary to specify the metric for this
route.

The full syntax for the route statement is route <network> <netmask> [gateway] [metric], where gateway can either be
explicitly set as an IPv4 address or either of the special keywords vpn_gateway or net_gateway can be used. If no gateway and no metric
are specified, then vpn_gateway is used.

The keyword net_gateway is useful to specify a subnet that should explicitly not be routed via the VPN. For net_gateway, the default
gateway before the VPN connection was established is substituted.

The metric has a default metric that can be set using route-metric m, which then applies to all routes. If you wish to overrule the metric for
a particular route (as we have done in this example), then it is required to specify the gateway (vpn_gateway in our case) followed by the
metric for that particular route.

Masquerading
Sometimes, it is not possible to add a server-side route to redirect all VPN traffic back to the OpenVPN server. In this case, a quick and dirty
approach is to use masquerading. On Linux, you can use the iptables command to set up masquerading on the server:

[root@server]# iptables -t nat -I POSTROUTING -o eth0 \

 -s 10.200.0.0/24 -j MASQUERADE

This iptables statement instructs the Linux kernel to rewrite all traffic that is coming from the VPN subnet 10.200.0.0/24 and that is
leaving the Ethernet interface eth0. The traffic leaving the eth0 interface has its source address rewritten so that it appears as if it is coming
from the OpenVPN server itself and not from the OpenVPN client. This is an easy shortcut to get routing to work, but the disadvantage is that it
is no longer possible to distinguish whether such traffic is coming from the OpenVPN server itself, or from one of the connected clients.

87

Redirecting the default gateway
A very common use of a VPN is to route all the traffic over a secure tunnel. This allows one to safely access a network, or even the Internet
itself, from within a hostile environment (for example, a poorly protected Internet cafe).

Redirecting the default gateway is achieved by adding the line push “redirect-gateway [def1 local bypass-dhcp bypass-
dns]” to the server configuration file.

The parameters to redirect-gateway listed previously are optional, but they can play a very important role:

No parameters added: In this case, OpenVPN will replace the existing default gateway (0.0.0.0/0) with the address of the OpenVPN
server itself. An extra route to the OpenVPN server itself is also added so that the OpenVPN traffic itself is sent directly to the server,
instead of via the tunnel. The disadvantage is that if the OpenVPN connection is stopped or breaks down, the original default gateway is
lost. This usually causes a full loss of network connectivity.
Parameter def1: Instead of replacing the existing default gateway, OpenVPN will add two new routes, 0.0.0.0/1 and 128.0.0.0/1. These
routes together also cover all IPv4 space, and are more specific (/1) than the regular gateway (/0). Routing always takes place over the
more specific routes, and thus all traffic is sent over the VPN. The advantage of this trick is that the default gateway is left intact. If the
VPN connection is stopped, the original gateway can be restored. Note that in this case, OpenVPN will add an explicit route to the
OpenVPN server itself, so the encrypted traffic itself will not be sent over the tunnel.
Parameter bypass-dhcp: Sometimes, it is useful to add an explicit route to the local DHCP server on the client-side LAN. This
avoids DHCP renewals to also be tunneled over the VPN, although in most network setups this does not happen, as there usually is a
more specific route to the network segment on which the local DHCP server resides.
Parameter bypass-dns: Sometimes, it can be necessary to add an explicit route to the local DNS server, as DNS resolution breaks
down otherwise. This happens only if you want to use the client-side DNS server, yet you want to route all traffic over the tunnel.

Apart from the option redirect-gateway, we could also specify the option push “redirect-private [def1 local bypass-
dhcp bypass-dns]” to the server configuration file. This option takes the same parameters as redirect-gateway, but it does not
change the existing default gateway at all. This can be useful for pushing private subnets.

For now, we add push “redirect-gateway def1” to the basic-udp-server.conf configuration file. Save it as movpn-04-
06-server.conf, start the OpenVPN server, and reconnect the client using the default configuration file.

After the connection is established, we verify that all traffic is now flowing via the VPN using the traceroute command (use tracert -d
in a command shell on Windows):

The first hop in the traceroute output is 10.200.0.1, which is the IP address of the OpenVPN server. This proves that traffic is flowing
via the VPN by default.

The configuration option redirect-gateway def1 tells the OpenVPN client to add three routes to the client operating system:

10.198.1.1 via 192.168.4.254 dev eth0

0.0.0.0/1 via 10.200.0.1 dev tun0

128.0.0.0/1 via 10.200.0.1 dev tun0

The first route is an explicit route from the client to the OpenVPN server via the LAN interface. This route is needed as all the traffic for the
OpenVPN server itself would go through the tunnel otherwise.

The other two routes are a clever trick to overrule the default route so that all the traffic is sent through the tunnel instead of to the default LAN
gateway.

The advantage of this method is that the original default gateway is left intact. When the VPN is disconnected, the original gateway address
automatically takes over again. If we would simply use redirect-gateway, there is a chance that the default gateway is lost when the VPN
is disconnected, resulting in a complete loss of network connectivity.

The downside of this method is with Windows 7 and above clients: Windows sometimes refuses to trust the TAP-Win adapter without a default
route, and therefore marks it as a public adapter. It is not possible to use a public adapter in Windows 7 for file or printer sharing. We will see in
the next chapter how to work around this peculiarity.

88

89

Client-specific configuration – CCD files
In a setup where a single server can handle many clients, it is sometimes necessary to set per-client options that overrule the global options, or
to add extra options to a particular client. The option client-config-dir is very useful for this. It allows the VPN administrator to assign
a specific IP address to a client, in order to push specific options such as a DNS server to a particular client or to temporarily disable a client
altogether. This option is also vital if you want to route a subnet from the client side to the server side, as we will see later on.

A client-config-dir or CCD file can contain the following options:

push: This is useful for pushing DNS and WINS servers, routes, and so on
push-reset: This is useful to overrule global push options
iroute: This is useful for routing IPv4 client subnets to the server
iroute-ipv6: This is useful for routing IPv6 client subnets to the server
ifconfig-push: This is useful for assigning a specific IPv4 address to a client
ifconfig-ipv6-push: This is useful for assigning a specific IPv6 address to a client
disable: This is useful for temporarily disabling a client altogether
config: This is useful for including another CCD configuration file

In order to use CCD files, we add a line to the basic-udp-server.conf configuration file:

client-config-dir /etc/openvpn/movpn/clients

Save it as movpn-04-04-server.conf. Next, create the CCD directory and create a CCD file in it for the client with certificate
client1.crt:

[root@server]# mkdir -p /etc/openvpn/movpn/clients

[root@server]# echo “ifconfig-push 10.200.0.99 255.255.255.0” \

 > /etc/openvpn/movpn/clients/client1

[root@server]# chmod 755 /etc/openvpn/movpn/clients

[root@server]# chmod 644 /etc/openvpn/movpn/clients/client1

The name of the CCD file is based on the certificate subject’s common name (the “/CN=” part), as found in the client1.crt file:

$ openssl x509 -subject -noout -in client1.crt

subject= /C=ZA/ST=Enlightenment/O=Mastering OpenVPN/CN=client1/emailAddress=root@example.org

The filename needs to be just client1 with no extension in this case, not even on Windows! If there are spaces present in the common name,
then they need to be converted to underscores (_). If the Windows Explorer is configured to hide extensions for common file types, then it is
easiest to open a command shell (cmd.exe) window, and remove the extension using the following commands:

 C:\> cd %PROGRAMFILES%\openvpn\config\clients

 C:\> rename client1.txt client1,145.102.134.201:35519

Next, we start the OpenVPN server using this configuration file and we connect the VPN client. The connection log shows that the client is
assigned the address 10.200.0.99:

[root@client]# openvpn --config basic-udp-client.conf

OpenVPN 2.3.2 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [eurephia] [MH]

[IPv6] built on Sep 12 2013

Control Channel Authentication: using ‘/etc/openvpn/movpn/ta.key’ as a OpenVPN static key file

UDPv4 link local: [undef]

UDPv4 link remote: [AF_INET]openvpnserver:1194

[Mastering OpenVPN Server] Peer Connection Initiated with [AF_INET]openvpnserver:1194

TUN/TAP device tun0 opened

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tun0 up mtu 1500

/sbin/ip addr add dev tun0 10.200.0.99/24 broadcast 10.200.0.255

Initialization Sequence Completed

The server-side log does not show any messages about picking up the CCD file when using the default verbosity setting. Increase the verbosity
setting to 5 or higher to view whether the CCD file is processed:

<client-ip>:49299 [client1] Peer Connection Initiated with [AF_INET]<client-ip>:49299

client1/<client-ip>:49299 OPTIONS IMPORT: reading client specific options from:

/etc/openvpn/movpn/clients/client1client1/<client-ip>:49299 MULTI: Learn: 10.200.0.99 ->

client1/<client-ip>:49299

How to determine whether a CCD file is properly processed
Troubleshooting whether a CCD file is correctly processed can be a bit tricky. The following guidelines will aid in debugging CCD file issues:

Always specify the full path for the client-config-dir option.
Make sure the directory is accessible and the CCD file is readable to the user which is used to run OpenVPN (nobody or openvpn in
most cases; in the configurations listed in this book, the user nobody is used).
Make sure that the right filename is used for the CCD file, without any extensions.
If possible, add the option ccd-exclusive to the server configuration file. This instructs OpenVPN to only allow client connections
if there is a particular CCD file for that client. If there was a problem reading the CCD-file for a particular client, then the client will also

90

be denied access. This way, you will know that your client-config-dir settings are misconfigured.

CCD files and topology net30
If you are using the (default) topology setting (topology net30), then the ifconfig-push statement is slightly different. As each client
is now assigned a /30 subnet, the ifconfig-push statement needs to specify a valid VPN /30 subnet. The following rules apply:

Each /30 subnet needs to start at an address divisible by 4 (4, 8, 12, and so on)
The VPN local IP is the third address in this subnet
The virtual remote endpoint IP is the second address

For example, a valid IP address for a VPN client is 10.200.0.50:

The subnet is 10.200.0.48/32, where 48 is a multiple of 4
The VPN IP address is 50 (48+2 = 50)
The virtual remote endpoint is 49 (48 + 1 = 49)

The CCD file should now contain the following:

ifconfig-push 10.200.0.50 10.200.0.49

91

Client-side routing
Sometimes, it is useful to allow the VPN server (or other VPN clients) to access resources connected to a particular client. This is known as
client-side routing. Client-side routing in OpenVPN requires a CCD file for that client containing an iroute statement. It also requires a
corresponding route statement in the OpenVPN server configuration file.

Consider the following network layout:

The subnet 192.168.4.0/24 needs to be accessible from the server-side LAN and the server-side subnet 192.168.122.0/24 needs to be accessible
from the client-side LAN. This can be achieved as follows:

1. Add two lines to the basic-udp-server.conf configuration file:

client-config-dir /etc/openvpn/movpn/clients

route 192.168.4.0 255.255.255.0 10.200.0.1

Save it as movpn-04-05-server.conf.
2. Create a CCD file client1 in the directory /etc/openvpn/movpn/clients with contents:

ifconfig-push 10.200.0.99 255.255.255.0

iroute 192.168.4.0 255.255.255.0

push “route 192.168.122.0 255.255.255.0”

3. Ensure that IP traffic forwarding is enabled and allowed on both client and server:

[root@client]# sysctl -w net.ipv4.ip_forward=1

[root@server]# sysctl -w net.ipv4.ip_forward=1

4. Start the OpenVPN server using the configuration file

movpn-04-05-server.conf.
5. Connect the client using the default configuration file

basic-udp-client.conf.
6. After the connection has been established, we verify that both subnets can reach each other using ping:

[root@client]# ping -c 3 192.168.122.184

PING 192.168.122.184 (192.168.122.184) 56(84) bytes of data.

64 bytes from 192.168.122.184: icmp_seq=1 ttl=63 time=3.29 ms

64 bytes from 192.168.122.184: icmp_seq=2 ttl=63 time=3.27 ms

64 bytes from 192.168.122.184: icmp_seq=3 ttl=63 time=3.31 ms

--- 192.168.122.184 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2006ms

rtt min/avg/max/mdev = 3.277/3.296/3.317/0.016 ms

[root@server]# ping -c 3 192.168.4.10

PING 192.168.4.10 (192.168.4.10) 56(84) bytes of data.

64 bytes from 192.168.4.10: icmp_seq=1 ttl=63 time=6.31 ms

64 bytes from 192.168.4.10: icmp_seq=2 ttl=63 time=5.07 ms

64 bytes from 192.168.4.10: icmp_seq=3 ttl=63 time=5.14 ms

--- 192.168.4.10 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2007ms

rtt min/avg/max/mdev = 5.073/5.512/6.317/0.575 ms

In-depth explanation of the client-config-dir configuration
In the first step, we add two new lines to the server configuration file. These lines set up client-config-dir, and they instruct OpenVPN
to add a system network route for the subnet 192.168.4.0/24. We need to explicitly specify the gateway address 10.200.0.1 here, due to a
minor bug in OpenVPN. This shortcoming is expected to be resolved in Version 2.4, after which you can specify route 192.168.4.0
255.255.255.0 again.

92

The contents of the CCD file instruct OpenVPN that when the client with Common Name client1 connects the IP address for this client is to
be set to 10.200.0.99. Furthermore, OpenVPN needs to set an internal route (iroute) for this client so that OpenVPN itself is aware that
the subnet 192.168.4.0/24 is located behind this particular client.

Finally, the push route statement instructs OpenVPN to push a route for this particular subnet to client client1. This way, an OpenVPN
server can push different routes to different clients in a transparent manner.

Note

Selectively pushing a route to a particular client can be handy, but it is not tamper-proof. A rogue VPN client that adds a route to this subnet by
itself will also have access to it. If you need to control access to a particular subnet, use a firewalling solution such as iptables or ipfw.

This example shows the flexibility of the OpenVPN configuration options. Without having to change a single line in the client configuration
file, it is possible to assign a different IP address, route a particular subnet to a client, or route a particular subnet from the client-side network to
the server-side LAN.

Client-to-client traffic
OpenVPN also allows you to set up client-to-client traffic. By default, the VPN clients are not allowed to communicate directly with each other.
This is a good security measure, but sometimes it is necessary to allow inter-client traffic. Be aware that all VPN client-to-client traffic will flow
via the OpenVPN server: from client1 to the VPN server and then again from the VPN server to client 2, and vice versa. This can easily
lead to performance issues.

In tun mode, client-to-client connectivity can be achieved using either iptables or by using the OpenVPN option client-to-client.
The option client-to-client has the advantage that it is faster: traffic from one client arriving at the server is automatically forwarded to
the second client, without passing through the system routing tables or firewalling rules. The downside is that it is hard to monitor the traffic,
and it is impossible to apply access control.

Without the client-to-client option, the traffic from one client is received by the OpenVPN server, forwarded out to the system routing
and firewalling tables, and (if configured correctly) bounced back to the OpenVPN server again. The server then forwards it out to the second
client.

If other VPN clients need to access the subnet 192.168.4.0/24 as specified in the preceding example, then the server configuration needs to be
extended with a line:

push “192.168.4.0 255.255.255.0”

This instructs the OpenVPN server to push a route to all clients that subnet 192.168.4.0/24 is reachable through the VPN tunnel, except for
client client1. The client client1 itself is excluded due to the matching iroute entry.

93

The OpenVPN status file
OpenVPN offers several options to monitor the clients connected to a server. The most commonly used method is using a status file. The
OpenVPN status file is continually updated by the OpenVPN process and contains the following information:

Which clients are connected
From which IP address the clients are connecting
The number of bytes each client has received and transferred
The time at which the client connected
In addition, the routing table also shows which networks are routed to each client

We modify the client-side routing server configuration file movpn-04-05-server.conf by adding a line to the server
configuration:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

client-config-dir /etc/openvpn/movpn/clients

route 192.168.4.0 255.255.255.0 10.200.0.1

status /var/run/openvpn.status 3

Save it as movpn-04-07-server.conf. After re-establishing the VPN connection, we then see the following contents in the status file,
after the VPN client client1 has connected and has transferred some data:

OpenVPN CLIENT LIST

Updated,Tue Oct 21 15:45:27 2014

Common Name,Real Address,Bytes Received,Bytes Sent,Connected Since

client1,<client-IP>:35519,7730,9342,Tue Oct 21 15:44:35 2014

ROUTING TABLE

Virtual Address,Common Name,Real Address,Last Ref

192.168.4.0/24,client1,145.102.134.201:35519,Tue Oct 21 15:44:35 2014

10.200.0.99,client1,145.102.134.201:35519,Tue Oct 21 15:44:35 2014

GLOBAL STATS

Max bcast/mcast queue length,0

END

The CLIENT LIST shows the list of connected clients, including information about the number of bytes received and bytes sent.

The ROUTING TABLE shows the list of OpenVPN internal routes:

The subnet 192.168.4.0/24 is routed to client1 due to the iroute statement in the server configuration
The IP address 10.200.0.99 is the IP address of client1 which we set explicitly in the CCD file named client1

When the client disconnects, the status file is updated after 3 seconds, and the connected client is no longer listed.

Note

When a client disconnects, all information is removed from the status file and all statistics are reset. If the client connects again later, the
number of received and sent bytes starts again from zero. The client-disconnect script is given all the status info when a client has been
disconnected.

The second parameter to the status option is the interval after which the status file is updated (rewritten). The default value is 60 seconds.

Reliable connection tracking for UDP mode
The OpenVPN server cannot immediately detect when using the UDP protocol that a client is disconnected, either on purpose or due to a bad

94

internet connection. This allows a client to reconnect to the VPN server without losing all tunneled connections in case of a bad connection. The
downside is that it takes some time for the OpenVPN server to realize that a client is gone.

An OpenVPN client can explicitly notify the server that it is disconnecting using the option explicit-exit-notify. This option takes
one parameter that specifies the number of explicit messages that the client attempts to send to the server. The default value is 1, which does not
work well if the underlying network connection itself is unstable. In that case it is recommended to increase this value to 3.

When explicit-exit-notify is used, the OpenVPN server immediately receives a remote-exit message when the client
disconnects, as can be seen in the server log file:

 SIGTERM[soft,remote-exit] received, client-instance exiting

Note that this problem does not occur when proto tcp is used, as the termination of a TCP connection is immediately noticed by the server.

95

The OpenVPN management interface
One of the most powerful but less well-known options of OpenVPN is the management interface. The management interface is available on
both the server side and the client side. On the server side, it can be used to collect statistics, monitor and control the connected clients, and
perform other management related tasks. On the client side, it can be used to query for passwords, enter proxy information for establishing a
connection with the VPN server, interact with a PKCS #11 device, and collect client-side statistics.

The OpenVPN plugin for the Linux NetworkManager makes extensive use of the management interface to control the startup and shutdown of
the VPN connection.

To use the management interface, add a line management 127.0.0.1 23000 stdin to either the client or the server configuration file.
This option instructs OpenVPN to set up the management interface on IP address 127.0.0.1, port 23000, and to use stdin to specify the
management password.

If we add this to the basic-udp-server.conf configuration file and launch the OpenVPN server, then OpenVPN will first query us for
the management password to use:

We can then use telnet to log in on the management interface (user input is listed in boldface):

[root#server]# telnet 127.0.01 23000

Trying 127.0.0.1...

Connected to 127.0.01.

Escape character is ‘^]’.

ENTER PASSWORD:[password]

SUCCESS: password is correct

>INFO:OpenVPN Management Interface Version 1 -- type ‘help’ for more info

help

Management Interface for OpenVPN 2.3.2 x86_64-redhat-linux-gnu [SSL (OpenSSL)]

[LZO] [EPOLL] [PKCS11] [eurephia] [MH] [IPv6] built on Sep 12 2013

Commands:

auth-retry t : Auth failure retry mode

 (none,interact,nointeract).

bytecount n : Show bytes in/out, update every n secs

 (0=off).

echo [on|off] [N|all] : Like log, but only show messages in echo

 buffer.

exit|quit : Close management session.

forget-passwords : Forget passwords entered so far.

help : Print this message.

[...]

END

This raw telnet interface can be used to view the status of the server, providing the same output as the option status from the previous
example. It can also be used to terminate a client connection immediately, using the following command:

kill client1

This will cause client client1 one to be disconnected. Note that in most cases the client will automatically attempt to reconnect. Now, type
exit to end the telnet session.

The management interface can be used to control OpenVPN in many different ways (adapted from the OpenVPN manual page
https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage):

management IP port [pw-file]: Enable a TCP server on IP:port to handle daemon management functions. pw-file, if
specified, is a password file (password on first line) or stdin to prompt from standard input. The password provided will set the
password which TCP clients will need to provide in order to access management functions.

The management interface can also listen on a Unix domain socket, if supported. To use a domain socket, specify the Unix socket
pathname in place of IP and set port to unix.

96

https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage

The management interface provides a special mode where the TCP management link can operate over the tunnel itself. To enable this
mode, set IP = “tunnel”. Tunnel mode will cause the management interface to listen for a TCP connection on the local VPN
address of the TUN/TAP interface.
management-client: The management interface will connect as a TCP/Unix domain client to IP:port specified by --
management rather than listen as a TCP server or on a Unix domain socket. If the client connection fails to connect or is disconnected,
a SIGTERM signal will be generated, and cause OpenVPN to quit.
management-query-passwords: This is the query management channel for private key password and --auth-user-pass
username/password.
management-hold: Start OpenVPN in a hibernating state, until a client of the management interface explicitly starts it with the hold
release command.
management-signal: Send SIGUSR1 signal to OpenVPN if management session disconnects. This is useful when you wish to
disconnect an OpenVPN session on user logoff.
management-client-auth: This gives management interface client the responsibility to authenticate clients after their client
certificate has been verified.

97

Session key renegotiation
To ensure the security of each OpenVPN connection, the server periodically renegotiates the secret key for the data channel with each client.
This is controlled using three options:

reneg-sec N: Renegotiate data channel key after N seconds (default is 3600)
reneg-bytes N: Renegotiate data channel key after N bytes (default=0=off)
reneg-pkts N: Renegotiate data channel key after N packets (default=0=off)

If a VPN client is experiencing periodic timeouts when connected to the server, it is often useful to vary these parameters. If you set the
reneg-sec parameter at a very short interval, however, the performance of the VPN will be severely degraded.

The reneg options can be specified on either the client or the server side, or both. The reneg option that runs the most frequently on either
side will reset the counters on both ends. If the server specifies reneg-sec 500 but the client specifies reneg-sec 60, then the data
channel renegotiation will occur approximately every 60 seconds.

We create an example by adding three lines to the basic-udp-server.conf configuration file:

reneg-sec 10

reneg-pkts 1000

reneg-bytes 1000000

We save the configuration as movpn-04-09-server.conf and re-establish the VPN connection. The server log will now contain many
lines stating TLS: soft reset:

Tue Oct 21 16:53:29 2014 <IP>:41679 [client1] Peer Connection Initiated with [AF_INET]<IP>:41679

[...]

Tue Oct 21 16:53:39 2014 client1/<IP>:41679 TLS: soft reset sec=0 bytes=0/100000 pkts=0/100

[...]

Tue Oct 21 16:53:49 2014 client1/<IP>:41679 TLS: soft reset sec=0 bytes=53/100000 pkts=1/100

[...]

Tue Oct 21 16:53:59 2014 client1/<IP>:41679 TLS: soft reset sec=0 bytes=105/100000 pkts=2/100

With the option reneg-sec 10 set we see from the server log timestamps that the data channel key is renegotiated every 10 seconds.

On the client side, we can also see the impact this key renegotiation has on the performance of the VPN connection. By letting a simple ping
command run after the connection has come up, we can see when the key renegotiation is happening based on the spikes in the ping response
times:

[client]$ ping 10.200.0.1

PING 10.200.0.1 (10.200.0.1) 56(84) bytes of data.

64 bytes from 10.200.0.1: icmp_seq=1 ttl=64 time=3.29 ms

64 bytes from 10.200.0.1: icmp_seq=2 ttl=64 time=3.55 ms

64 bytes from 10.200.0.1: icmp_seq=3 ttl=64 time=61.6 ms

64 bytes from 10.200.0.1: icmp_seq=4 ttl=64 time=16.6 ms

64 bytes from 10.200.0.1: icmp_seq=5 ttl=64 time=3.23 ms

64 bytes from 10.200.0.1: icmp_seq=6 ttl=64 time=3.22 ms

64 bytes from 10.200.0.1: icmp_seq=7 ttl=64 time=3.74 ms

64 bytes from 10.200.0.1: icmp_seq=8 ttl=64 time=3.25 ms

64 bytes from 10.200.0.1: icmp_seq=9 ttl=64 time=3.21 ms

64 bytes from 10.200.0.1: icmp_seq=10 ttl=64 time=3.26 ms

64 bytes from 10.200.0.1: icmp_seq=11 ttl=64 time=3.26 ms

64 bytes from 10.200.0.1: icmp_seq=12 ttl=64 time=3.55 ms

64 bytes from 10.200.0.1: icmp_seq=13 ttl=64 time=3.27 ms

64 bytes from 10.200.0.1: icmp_seq=14 ttl=64 time=3.26 ms

64 bytes from 10.200.0.1: icmp_seq=15 ttl=64 time=3.31 ms

64 bytes from 10.200.0.1: icmp_seq=16 ttl=64 time=3.28 ms

64 bytes from 10.200.0.1: icmp_seq=17 ttl=64 time=77.1 ms

...

The same thing will happen when the packet or byte boundary is crossed, at which moment the data channel keys will also be renegotiated.

A note on PKCS#11 devices
Especially when using PKCS#11 devices, the key renegotiation can be cumbersome. Some PKCS#11 devices put a heavy penalty on key
renegotiation, causing the renegotiation process to take several seconds. During this time the VPN is unresponsive.

Setting the reneg-sec value to 0 will effectively disable key renegotiation, but this makes the VPN itself susceptible to man-in-the-middle
and timing attacks, rendering the extra security of using a hardware security device useless.

98

99

Using IPv6
With OpenVPN 2.3 came solid support for IPv6, both within the OpenVPN tunnel as well as for transit of the tunnel itself. OpenVPN all the
way back to 1.x had rudimentary support for IPv6, which was largely rewritten. Overall, inside an OpenVPN tunnel an administrator can choose
to support Ethernet (layer 2), IPv4 (layer 3), and IPv6 (layer 3).

The diagram illustrates the logical relationship of the transit network path and the protected network path. Only a single transit method needs to
be used, and a single OpenVPN configuration can contain both IPv4 and IPv6 --remote entries. All traffic, regardless of type, will be
protected within the tunnel. It is perfectly acceptable to have an all-IPv6 tunnel, using IPv6 for both transit and protected traffic. With additional
routing and proxying, it’s even possible to use OpenVPN to aid in IPv6 to IPv4 translation.

Protected IPv6 traffic
Building on the examples from the previous section, we can provide IPv6 addresses to clients and protect that traffic within the tunnel. To do
this, we add a --server-ipv6 option to our server configuration. This operates similarly to the --server directive, only for IPv6 instead
of IPv4 and takes an IPv6 network address and netmask as arguments. Like --server, --server-ipv6 is a macro for other options that
can be passed individually: --ifconfig-ipv6, --ifconfig-ipv6-pool, --tun-ipv6, and –push tun-ipv6.

Just like with IPv4, IPv6 routes can be pushed from the main server configuration or from per-client configuration files in your client-
config directory. In this example, however, we will simply push a default route for all IPv6 traffic.

There is not currently a redirect-gateway option in OpenVPN for IPv6. Routes are added similar to IPv6, with the keyword route-
ipv6 instead of route.

Now, modify the movpn-04-01-server.conf file, and add the --server-ipv6 directive:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

server-ipv6 2001:DB8:100::/64

push “route-ipv6 ::/0”

topology subnet

persist-key

persist-tun

keepalive 10 60

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

Once the file has been saved, a restart of the OpenVPN server process is required. If the process started correctly with the new option, you
should see something like this in your log file:

IFCONFIG POOL IPv6: (IPv4) size=252, size_ipv6=65536, netbits=64, base_ipv6=2001:db8:100::1000

At this point, clients are able to pass traffic using IPv6 inside the tunnel, and the server is pushing a default route to clients for IPv6. Adding the
server configuration options requires no additional corresponding options within the client configurations.

A connected client will show both an IPv4 and IPv6 address on the tunX interface.

100

Here’s a FreeBSD example:

utun1: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1331

 inet 10.200.0.2 --> 10.200.0.2 netmask 0xffffff00

 inet6 fe80::5ab0:35ff:fef5:811f%utun1 prefixlen 64 scopeid 0x9

 inet6 2001:db8:100::1001 prefixlen 64

 nd6 options=1<PERFORMNUD>

Here’s a Windows 7 example:

Note that the popup from hovering over the task bar icon doesn’t display the IPv6 address, but the ipconfig command from a terminal does
show both addresses.

Using IPv6 as transit
OpenVPN doesn’t currently have the ability to listen on both IPv4 and IPv6 addresses at the same time, but most modern kernels can handle this
for you with IPv6-mapped addresses. What this does is takes a Version 4 IP, such as 192.168.200.4 and maps it as the IPv6 address of
::ffff:192:168.:200:.:4. Also, instead of proto udp, the protocol will be udp6 on both the client and the server.

After changing the proto statement from our sample config, client2 is initialized and we can see the address are assigned. Both the
OpenVPN server v4 and v6 addresses can be pinged and we can confirm that the transit over the tunnel is via IPv6 with tcpdump.

Here’s the client tun interface:

ecrist@phillip:~-> ifconfig tun4

tun4: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> metric 0 mtu 1500

 options=80000<LINKSTATE>

 inet6 fe80::216:3eff:fe09:5d4e%tun4 prefixlen 64 scopeid 0x9

 inet 10.200.0.2 --> 10.200.0.2 netmask 0xffffff00

 inet6 2001:db8:100::1000 prefixlen 64

 nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

 Opened by PID 45391

Here’s the IPv4 inside tunnel ping:

ecrist@phillip:~-> ping -c 1 10.200.0.1

PING 10.200.0.1 (10.200.0.1): 56 data bytes

64 bytes from 10.200.0.1: icmp_seq=0 ttl=64 time=0.490 ms

--- 10.200.0.1 ping statistics ---

1 packets transmitted, 1 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 0.490/0.490/0.490/0.000 ms

Here’s the IPv6 inside tunnel ping:

ecrist@phillip:~-> ping6 -c 1 2001:db8:100::1

101

PING6(56=40+8+8 bytes) 2001:db8:100::1000 --> 2001:db8:100::1

16 bytes from 2001:db8:100::1, icmp_seq=0 hlim=64 time=0.591 ms

--- 2001:db8:100::1 ping6 statistics ---

1 packets transmitted, 1 packets received, 0.0% packet loss

round-trip min/avg/max/std-dev = 0.591/0.591/0.591/0.000 ms

Here’s the tcpdump output (note the IPv6 keyword in the output):

root@terrance:/usr/local/etc/openvpn-> tcpdump -i xn0 host 2001:db8:5555:5555::1

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on xn0, link-type EN10MB (Ethernet), capture size 65535 bytes

19:14:05.449553 IP6 phillip.1194 > terrance.1194: UDP, length 53

19:14:05.449692 IP6 terrance.1194 > phillip.1194: UDP, length 53

19:14:08.389222 IP6 phillip.1194 > terrance.1194: UDP, length 93

19:14:08.389394 IP6 terrance.1194 > phillip.1194: UDP, length 93

19:14:09.389858 IP6 phillip.1194 > terrance.1194: UDP, length 93

102

Advanced configuration options
The next few sections illustrate some advanced configuration options. It is suggested you fully understands the impact to their network before
deploying these in a production environment. These options are rarely used, but can be extremely beneficial in the right circumstances.

Proxy ARP
It is often desirable to make VPN clients appear as if they are part of the server-side network. This makes it easier to browse folders and share
files and printers. To achieve this purpose, many setups resort to Ethernet bridging (see Chapter 6, Client/Server Mode with tap Devices), which
has its own drawbacks. The performance of a bridged configuration can be much lower compared to a nonbridged setup.

When the OpenVPN server runs on Linux or Unix, there is an alternative solution: most Unix kernels have Proxy ARP capabilities, which can
be used to assign an OpenVPN client with an IP address on the server-side LAN, and make it appear as if it is part of that LAN. Note that this
works only for IPv4 networks, as IPv6 networking does not use ARP.

Consider the following network layout:

In this layout, the standard VPN subnet 10.200.0.0/24 cannot be used, as we have to integrate the VPN clients into the existing subnet, which
for this example is 192.168.3.0/24. Current machines in this subnet are in the range 192.168.3.10 - 192.168.3.24, thus we place the VPN
addresses a little outside of this range. Make sure that the VPN addresses should not be advertised by a DHCP server on the server-side LAN, as
we want OpenVPN to assign the addresses for the VPN clients.

For this example, we will make use of the OpenVPN capability to run scripts when a client connects or disconnects. The scripting abilities of
OpenVPN are explained in more detail in Chapter 7, Scripting and Plugins.

1. We start out with the following server configuration file:

proto udp

port 1194

dev tun

server 192.168.3.32 255.255.255.224

push “route 192.168.3.0 255.255.255.0”

topology subnet

persist-key

persist-tun

keepalive 10 60

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

verb 3

daemon

log-append /var/log/openvpn.log

script-security 2

client-connect /etc/openvpn/movpn/proxyarp-connect.sh

client-disconnect /etc/openvpn/movpn/proxyarp-disconnect.sh

Note that we have added three statements to set the security level for the scripts, and to run a custom script whenever a client connects
or disconnects.

2. Save this configuration file as movpn-04-10-server.conf.
3. Next, create the proxyarp-connect.sh script that is executed each time a VPN client connects:

#!/bin/bash

/sbin/arp -i eth0 -Ds ${ifconfig_pool_remote_ip} eth0 pub

/sbin/ip route add ${ifconfig_pool_remote_ip}/32 dev tun0

4. Save the script as /etc/openvpn/movpn/proxyarp-connect.sh. The script location must match the absolute path specified
in the movpn-04-10-server.conf file.

5. Then, create the proxyarp-disconnect.sh script that is executed when the client disconnects:

103

#!/bin/bash

/sbin/arp -i eth0 -d ${ifconfig_pool_remote_ip}

/sbin/ip route del ${ifconfig_pool_remote_ip}/32 dev tun0

6. Save the script as /etc/openvpn/movpn/proxyarp-disconnect.sh.

Note

The device names eth0 and tun0 are hardcoded into the scripts. This is necessary as the device on which the extra ARP address needs
to be published is unknown to OpenVPN. It is also possible to publish the extra ARP address on multiple interfaces (eth0, eth1,
wlan0, and so on) by duplicating the /sbin/arp line in both scripts.

Make both scripts executable, and launch the OpenVPN server using the following commands:

[root@server]# chmod a+x /etc/openvpn/movpn/proxyarp-connect.sh

[root@server]# openvpn --config movpn-04-10-server.conf

7. As always, use the basic-udp-client.conf (or basic-udp-client.ovpn) configuration file to connect to the server. After
the VPN client has successfully connected, we verify that the client is seen by other devices on the LAN. For this, we used an Android
smart phone with the app Fing installed:

Note

No extra network routes were added on the Android device. The VPN client is truly integrated into the existing subnet.

8. We can also verify that the OpenVPN server machine is now publishing an extra IP address in its ARP tables:

[server]$ /sbin/arp -an | grep PERM

? (192.168.3.34) at * PERM PUP on eth0

How does Proxy ARP work?

Proxy ARP is a feature supported by most Unix and Linux kernels. It is used most often for connecting dial-in clients to a LAN, and nowadays
also by ADSL and cable Internet providers.

The OpenVPN server borrows an IP address from its local LAN range when a client connects. This IP address is then assigned to this OpenVPN
client. The server also creates a special entry in the system’s ARP tables to tell the rest of site B’s LAN that the OpenVPN server acts as a proxy
for IP 192.168.3.34. This means that when another machine on the server-side LAN wants to know where to find the host with IP 192.168.3.34
then the OpenVPN server will respond with its own MAC address of the interface on which the Proxy ARP address was published.

The server configuration file contains a few statements that need some explanation:

server 192.168.3.32 255.255.255.224

push “route 192.168.3.0 255.255.255.0”

The preceding lines cause the OpenVPN server to assign the address 192.168.3.33 to the server VPN IP address, with a netmask of
255.255.255.224 (or /27). The first VPN client is assigned the address 192.168.3.34/27. However, this means that the VPN client itself cannot
reach any IP addresses outside of this range. The push route statement is needed to tell the OpenVPN client that the entire subnet

104

192.168.3.0/24 is reachable via the VPN.

So far, the server configuration file normally included the following lines:

user nobody

group nobody

In this configuration file, they are absent because the client-connect and client-disconnect scripts need to run as user root. An
alternative approach is to set up sudo rights so that the user nobody is allowed to execute the /sbin/arp command with root privileges.

Finally, the lines:

script-security 2

client-connect /etc/openvpn/movpn/proxyarp-connect.sh

client-disconnect /etc/openvpn/movpn/proxyarp-disconnect.

Set up OpenVPN’s scripting features. The first line sets the security level of the scripts to 2, which means that certain environment variables are
available to the script.

The client-connect and client-disconnect lines both specify an absolute path to the scripts to be executed.

Assigning public IP addresses to clients
As a follow up to the Proxy ARP example, we will now look at how we can hand out public IPv4 addresses to OpenVPN clients. Let’s assume
that the following set of (example only) public IPv4 addresses is available to us:

Our public IPv4 network is 192.0.2.160/28, which gives us 16 addresses. These addresses are used as follows:

IP address Use

192.0.2.160 This is the subnet’s network address

192.0.2.161 This is used for the server’s VPN IP address

192.0.2.162 Not available

192.0.2.163 Not available

192.0.2.164 - 192.0.2.170 This is available for VPN clients

192.0.2.171 This is the LAN address of the OpenVPN server itself

192.0.2.172 Not available

192.0.2.173 Not available

192.0.2.174 This is the router on the remote LAN

192.0.2.175 This is the network broadcast address

We now want to set up an OpenVPN server that is capable of handing out the addresses 192.0.2.164 through 192.0.2.170, with the OpenVPN
server itself at the address 192.0.2.161:

1. First we create the server configuration file:

proto udp

port 1194

dev tun

mode server

tls-server

ifconfig 192.0.2.161 255.255.255.240

ifconfig-pool 192.0.2.164 192.0.2.170

push “route 192.0.2.171 255.255.255.255 net_gateway”

push “route-gateway 192.0.2.174”

push “redirect-gateway def1”

push “topology subnet”

105

topology subnet

persist-key

persist-tun

keepalive 10 60

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

verb 3

daemon

log-append /var/log/openvpn.log

script-security 2

client-connect /etc/openvpn/movpn/proxyarp-connect.sh

client-disconnect /etc/openvpn/movpn/proxyarp-disconnect.sh

2. Save this file as movpn-04-11-server.conf. We will reuse the proxyarp-connect.sh and proxyarp-disconnect.sh
scripts from the previous example. Create proxyarp-connect.sh that is executed each time a VPN client connects:

#!/bin/bash

/sbin/arp -i eth0 -Ds ${ifconfig_pool_remote_ip} eth0 pub

/sbin/ip route add ${ifconfig_pool_remote_ip}/32 dev tun0

3. Save it as /etc/openvpn/movpn/proxyarp-connect.sh.
4. Then, create the proxyarp-disconnect.sh script that is executed when the client disconnects:

#!/bin/bash

/sbin/arp -i eth0 -d ${ifconfig_pool_remote_ip}

/sbin/ip route del ${ifconfig_pool_remote_ip}/32 dev tun0

5. Save it as /etc/openvpn/movpn/proxyarp-disconnect.sh. Make both scripts executable and launch the OpenVPN server:

[root@server]# chmod a+x /etc/openvpn/movpn/proxyarp-connect.sh[

[root@server]# openvpn --config movpn-04-11-server.conf

6. Use the basic configuration file to connect the OpenVPN client to the server. The first client will be assigned the address 192.0.2.164.

Check the IP address of the first client by browsing to https://www.whatismyip.com.

The server configuration file is similar to the file movpn-04-10-server.conf with the exception of this block:

mode server

tls-server

ifconfig 192.0.2.161 255.255.255.240

ifconfig-pool 192.0.2.164 192.0.2.170

push “route 192.0.2.171 255.255.255.255 net_gateway”

push “route-gateway 192.0.2.174”

push “redirect-gateway def1”

push “topology subnet”

Earlier in this chapter, it was explained that the macro server 10.200.0.0 255.255.255.0 expands as follows:

mode server

tls-server

push “topology subnet”

ifconfig 10.200.0.1 255.255.255.0

ifconfig-pool 10.200.0.2 10.200.0.254 255.255.255.0

push “route-gateway 10.200.0.1”

When handing out public IP addresses, we usually do not have the luxury of wasting IPv4 addresses. The option topology subnet, which
was introduced in OpenVPN 2.1, is really useful here.

After examining our public IPv4 space, we forsake the server statement and include our own version of the ifconfig and ifconfig-
pool options:

ifconfig 192.0.2.161 255.255.255.240: This specifies that the server VPN IP address is 192.0.2.161/28.
ifconfig-pool 192.0.2.164 192.0.2.170: This specifies that the pool of available IP addresses for VPN clients ranges
from 192.0.2.164 to 192.0.2.170 for a total of seven addresses. Note that an ifconfig-pool range needs to be contiguous.

Note

If there are ‘holes’ in a range then it is often easier to assign IP addresses using a script, as we will learn in Chapter 7, Scripting and
Plugins.

106

https://www.whatismyip.com

push “route 192.0.2.171 255.255.255.255 net_gateway”: This route to the LAN address of the VPN server needs
to be explicitly pushed to the clients. Normally, this route is added automatically by the OpenVPN client to ensure that traffic that is
intended for the OpenVPN server itself is not injected into the tunnel again, which would cause a packet loop. With our special
ifconfig and ifconfig-pool setup, it is advisable to add an explicit route to the LAN address of the OpenVPN server.
push “route-gateway 192.0.2.174”: route-gateway specifies the gateway address that is used to direct all tunnel traffic
to. Normally route-gateway is equal to the VPN server IP address. In this case, it would only cause a route hop, as the VPN server
would immediately forward it to the real gateway, 192.0.2.174, which is on the same subnet. Hence, we specify the IP address of the
LAN gateway.
push “redirect-gateway def1”: For an OpenVPN client to use the public address for all its traffic, it must route all traffic
over the VPN tunnel.
push “topology subnet”: Normally, the server macro takes care of this push for us, but as we are not using the server macro
here we must explicitly push this option. If this option is omitted, then the server would be assigning linear addresses (because it has a
line topology subnet in its configuration), yet the VPN clients would assume that they are assigned topology net30
addresses, which is the current default. The explicit push circumvents this potential misconfiguration.

107

Summary
In this chapter, a wide variety of features and options of client/server mode with tun devices were covered. We established a basic set of
configuration files for both the OpenVPN server and the client, for both the UDP and TCP protocol as means of transport, and for both
Windows and Linux/Unix clients. This set of basic configuration files will be used throughout the rest of the book.

We discussed how to set up an OpenVPN server serving both IPv4 addresses and IPv6 addresses. We covered server-side and client-side
routing, including redirecting all traffic over the VPN tunnel. We also saw how to hand out public IPv4 addresses using OpenVPN.

In the next chapter, we will explore the advanced features that OpenVPN offers. Also, in Chapter 6, Client/Server Mode with tap Devices,
several options and examples will be explained that are useful for tun mode as well.

108

Chapter 5. Advanced Deployment Scenarios in tun Mode
The basic configuration of a VPN is relatively simple but integrating that VPN with the rest of the network is a much more difficult task. In this
chapter, we will explore some advanced deployment scenarios for OpenVPN, which goes beyond the basic installation and configuration of a
VPN. Some of these scenarios are based on actual questions from users on the OpenVPN mailing lists, forum, and IRC channel. We will cover
the following topics:

Enabling (Windows) file sharing over the VPN
Integration with backend authentication mechanisms such as PAM and LDAP
Filtering VPN traffic (firewall)
Policy-based routing for enhanced security
Dealing with public versus private network adapters in Windows 7
Using OpenVPN with HTTP or SOCKS proxies

The examples presented throughout this chapter rely on the examples from the previous chapter, Chapter 4, Client/Server Mode with tun
Devices. Most notably, the Basic production-level configuration files and Adding extra security sections will be used.

Enabling file sharing over VPN
As stated in the Routing and server-side routing section in the previous chapter, a VPN is only truly useful when the VPN clients have access to
server-side resources. In order to access these server-side resources, routing is needed. This ensures the proper flow of network traffic between
the server-side LAN and the VPN.

One of the most common use cases for setting up a VPN is to allow remote workers to access resources on a corporate network. Files on a
corporate network are often stored on a Windows-based file server. In order to browse Windows file shares using network names, a WINS
server will be required.

Again, a very common layout for accessing resources on the server-side network is depicted here:

The server-side LAN is 192.168.122.0/24, and on this subnet, the resources are located that the VPN clients need to access.

We start out with the basic-udp-server.conf file and add three lines:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody # use 'group nogroup' on Debian/Ubuntu

verb 3

daemon

log-append /var/log/openvpn.log

push "route 192.168.122.0 255.255.255.0"

push "redirect-gateway"

push "dhcp-option WINS 192.168.122.1"

109

Save this file as movpn-05-01-server.conf.

The first extra line adds the server-side LAN to the set of networks that need to be routed via the VPN. The second line redirects all network
traffic via the VPN tunnel. This line is needed to ensure that OpenVPN's TAP-Win adapter is considered private. File sharing is possible only
using network adapters that are private (as opposed to public network adapters). The last extra line instructs the OpenVPN server to push an
extra DHCP option to the OpenVPN client, containing the IP address of the WINS server.

We start the OpenVPN server using this configuration file. We again use a 64 bit Windows 7 Professional machine as the OpenVPN client, on
which the X86_64 Version of OpenVPN 2.3.5-I001 is installed.

Launch the OpenVPN GUI application, select the configuration basic-udp-client, and click on Connect.

Like we did in the Routing and server-side routing section example in the previous chapter, we ensure that the OpenVPN server is forwarding
IP traffic and that an extra route is added on the server-side gateway to allow the VPN traffic to be routed correctly back via the VPN server.

After the VPN connection has been established, we go to Network and Sharing Center to verify that the TAP adapter (named vpn0 in the
following screenshot) is marked as non-public and that it is part of either the Home or Work networks/groups/locations/. If the TAP adapter is
marked public, this means that Windows does not trust traffic coming in from this adapter and it will refuse file sharing via the VPN. In the
Windows network locations – public versus private section of this chapter, we will go into the details of this topic.

110

As we can see, the OpenVPN connection vpn0 is part of the Work network, which means that file sharing is allowed.

The first method to test that file sharing is working is to browse to the file server using its IP address. You can do this by opening a command
prompt window and typing the following lines:

 C:> start \\192.168.122.1

At this point, an authentication dialog will pop up.

Enter your credentials for the file server. Now, a Windows explorer window with the contents of the remote shares will open.

Using NetBIOS names
Instead of browsing file shares by their IP addresses, it is much more convenient to use the Windows Network name of the file server. For this,
a WINS server address is needed by the Windows client. The line push "dhcp-option WINS 192.168.122.1" pushes out this WINS
address to all connecting OpenVPN clients. After the VPN connection has been established, we can verify that the proper WINS server is used
by issuing an ipconfig /all command in a command shell.

111

The IP address of the WINS server is listed on the line Primary WINS Server, which indicates that Windows will use this server for resolving
WINS names.

Now, when the Network and Sharing Center is opened, the file server will show up with its NetBIOS name (FILESERVER):

When we click on this icon, we will see the available shares on the file server:

112

When we click on the share again, an authentication dialog pops up. Enter your credentials for the file server. A Windows explorer window with
the contents of the remote share opens up, just like when using an IP address.

Using nbtstat to troubleshoot connection problems
The Windows command-line tool nbtstat is very valuable when troubleshooting Windows file sharing problems. You can look up a Windows
NetBIOS name and view the available shares, or you can find the NetBIOS name that corresponds to a particular IP address. In both cases, the
output will be something like this:

113

114

Using LDAP as a backend authentication mechanism
Normally, the security of a VPN is based on a X.509 certificate / private key pair, which all users of the VPN must possess in order to gain
access. The security of your VPN can be further increased by requiring users to also supply a username and password when they connect to the
OpenVPN server.

On the server side, the verification of the username and password can be done using several mechanisms:

Using a server-side password file that contains the username and their hashed passwords.
Using PAM (short for Pluggable Authentication Module), which is normally included in all Linux/UNIX operating systems.
Using a central directory server based on Lightweight Directory Access Protocol (LDAP). Note that both LDAP and Active Directory
can be used with various PAM modules as well.

It is also possible to authenticate against a Windows Active Directory domain, as this is very similar to using a standalone LDAP server. In this
example, we will show you how to authenticate users against an LDAP server.

The easiest way to support LDAP backend authentication is to use the openvpn-plugin-ldap module. On most Linux distributions, this
module needs be installed separately. For example, on RPM-based systems, you would use the following command:

sudo yum install openvpn-auth-ldap

We start out with the basic-udp-server.conf file and add one line:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody # use 'group nogroup' on Debian/Ubuntu

verb 3

daemon

log-append /var/log/openvpn.log

plugin /usr/lib64/openvpn/plugin/lib/openvpn-authldap.so \

 "/etc/openvpn/movpn/movpn_ldap.conf"

Save this file as movpn-05-02-server.conf and create the movpn_ldap.conf file:

<LDAP>

 URL ldaps://ldap.example.org

 Timeout 15

 TLSEnable no

 FollowReferrals yes

 TLSCACertFile /etc/pki/tls/certs/ca-bundle.crt

 TLSCACertDir /etc/pki/tls/certs

</LDAP>

<Authorization>

 BaseDN "ou=LocalUsers,dc=example,dc=org"

 SearchFilter "(&(uid=%u)(authorizedService=login))"

 RequireGroup false

</Authorization>

This is a very basic authldap configuration file using the secure LDAP server found at the URI ldaps://ldap.example.org, port
636, and an LDAP search filter based on the User ID (uid=%u) and the LDAP attribute authorizedService=login. The URI indicates
an SSL connection to the server with the ldaps:// service. These settings are highly dependent on the LDAP server used, but the openvpn-
ldap-auth plugin can be adapted to almost any configuration. For example, in this setup, no binding is used to connect to the LDAP server.
However, this as well as other connection options can be added.

Next we add a line to client config basic-udp-client.ovpn:

auth-user-pass

Save it as movpn-05-02-client.ovpn and launch the client. The client first initiates the connection with the server using its X.509

115

certificate and private key file, after which the user is prompted for a username and password.

If the proper credentials are entered, then the connection is established. Otherwise, the server refuses access.

Instead of using the openvpn-ldap-auth plugin, we could also use the PAM plugin. OpenVPN will then query the PAM subsystem for
authentication. If the PAM subsystem is properly configured to authenticate users against an LDAP database, then the same functionality would
be achieved. The OpenVPN server configuration file would then look like this:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody # use 'group nogroup' on Debian/Ubuntu

verb 3

daemon

log-append /var/log/openvpn.log

plugin /usr/lib64/openvpn/plugin/lib/openvpn-auth-pam.so "login login USERNAME password

PASSWORD"

Troubleshooting the LDAP backend authentication
Troubleshooting the LDAP backend authentication plugin can be tricky. The most important thing to do first is to ensure that the VPN server is
capable of connecting to the LDAP server and the user information can be retrieved. For this, the ldapsearch tool is very handy. This tool is
included in the OpenLDAP client utilities package.

Using BaseDN and SearchFilter from the movpn_ldap.conf file, we can query the LDAP server:

$ ldapsearch -x -H ldaps://ldap.example.org \

 -b ou=LocalUsers,dc=example,dc=org \

 "(&(uid=janjust)(authorizedService=login))"

The -x option signifies an anonymous (unauthenticated) bind to the server, and the -H option indicates the server URI. Note that the URI is
different from a host name, as it will include the protocol (SSL or plain text) as well as the hostname. The ldapsearch output should be
something like this:

extended LDIF

LDAPv3

base <ou=LocalUsers,dc=example,dc=org> with scope subtree

filter: (&(uid=janjust)(authorizedService=login))

requesting: ALL

janjust, LocalUsers, example.org

dn: uid=janjust,ou=LocalUsers,dc=example,dc=org

loginShell: /bin/bash

uid: janjust

cn: Jan Just Keijser

...

authorizedService: login

search result

search: 2

result: 0 Success

numResponses: 2

numEntries: 1

Make sure this is working before attempting to connect an OpenVPN client. If this works but the client cannot connect to the OpenVPN server,
then increase the verbosity on the server and watch for LDAP messages. Add the following line to the bottom of the configuration file and
restart the server:

verb 5

116

Reconnect the client and watch the server log for any LDAP authentication messages. For a failed connection attempt, the server logs will
contain lines like this:

LDAP bind failed: Invalid credentials

Incorrect password supplied for LDAP DN "uid=janjust,ou=LocalUsers,dc=example,dc=org".

[...] PLUGIN_CALL: POST /usr/lib64/openvpn/plugin/lib/openvpn-auth-

ldap.so/PLUGIN_AUTH_USER_PASS_VERIFY status=1

[...] PLUGIN_CALL: plugin function PLUGIN_AUTH_USER_PASS_VERIFY failed with status 1:

/usr/lib64/openvpn/plugin/lib/openvpn-auth-ldap.so

[...] TLS Auth Error: Auth Username/Password verification failed for peer

Whereas a successful connection attempt will show

[...] PLUGIN_CALL: POST /usr/lib64/openvpn/plugin/lib/openvpn-auth-

ldap.so/PLUGIN_AUTH_USER_PASS_VERIFY status=0

[...] TLS: Username/Password authentication succeeded for username 'janjust'

In these log messages, the connection-specific details such as the client IP address and the UDP port number were replaced with [...].

117

Filtering OpenVPN
Just like any other interface on a system or server, the tun and tap adapter interfaces can be filtered using your operating system appropriate
firewall software. In many cases, both for routing and filtering purposes, it's best to logically place the OpenVPN server in a network-central
location, such as at or near the border router. For homes, this is likely a cable or DSL modem. On corporate networks, this will generally be an
actual core router such as a Cisco or Juniper edge device.

Depending on the platform and your own or business preferences, the firewall can be a separate device between the OpenVPN server and the
unprotected Internet, or it can be software running on the same system as your OpenVPN server. Larger installations may even have multiple
firewalls.

The first image shows a network with a separate firewall inserted between the OpenVPN server and the border router and Internet:

The next image shows how, logically, the firewall and the OpenVPN server can be on the same machine:

Projects such as pfSense (https://www.pfsense.org) and OpenWRT (https://openwrt.org) integrate Internet connections, LANs, and VPNs in a
single system. These systems run software that provides a simple graphical interface to manage wireless networking, Internet connections, VPN
instances, and a firewall rule set to protect them all.

For our examples, we are going to allow only ports 80 and 443 from VPN clients to the rest of the network.

FreeBSD example
On FreeBSD, we will use pf to filter traffic in and out of our VPN. On FreeBSD, the OpenVPN interface is tun0. First, pf needs to be
enabled in rc.conf:

pf_enable="YES"

To start, we'll create an extremely simple ruleset in the default /etc/pf.conf:

pass all

Then, start pf:

root@server:~-> /etc/rc.d/pf start

Enabling pf

No ALTQ support in kernel

ALTQ related functions disabled

118

https://www.pfsense.org
https://openwrt.org

Using pfctl, we can list the rules and their counters:

root@server:~-> pfctl -vvv -s rules

No ALTQ support in kernel

ALTQ related functions disabled

@0 pass all flags S/SA keep state

 [Evaluations: 209 Packets: 13 Bytes: 624 States: 2]

 [Inserted: uid 0 pid 71163 State Creations: 7]

At this point, we have a simple ruleset that simply allows all packets on all interfaces. As this isn't a book on mastering pf, we won't go into the
minute details of the entire configuration. Here's a sample filter that allows all traffic on all interfaces, except tun0. Traffic on tun0 will be
filtered inbound, so only connections on ports 80 and 443 to the LAN can be made from the VPN clients. Traffic outbound on tun0 will be
allowed.

Mastering OpenVPN - FreeBSD Filtering Example

vpn_if="tun0"

out_if="xn0"

in_if="xn0"

lanv4="10.50.0.0/24"

lanv6="2001:db8:900::/64"

vpnv4="10.200.0.0/24"

vpnv6="2001:db8:100::/64"

pass on {$in_if, $out_if} all

pass out on $vpn_if all

block in on $vpn_if

pass in on $vpn_if inet proto tcp to $lanv4 port {http, https}

pass in on $vpn_if inet6 proto tcp to $lanv6 port {http, https}

Tip

Both OpenVPN and FreeBSD have a pf packet filter. In the above example, we are using the kernel supported pf and not the pf built into
OpenVPN.

A Windows example
Assuming you already have an OpenVPN server running on a Windows 7 Professional system, you'll access the firewall configuration through
Control Panel. Once Control Panel is open, type firewall in the search box and click on Windows Firewall. From the options available on
the left-hand side panel of the window, click on Advanced Settings. This will present the firewall configuration utility.

119

Click on Advanced settings to open the Windows Firewall with Advanced Security program, as shown in the following figure:

120

Once in the utility, we need to create two inbound rules. The first rule will block all traffic from the VPN, and the second one will allow traffic
on ports 80 and 443 from the VPN.

Once the New Inbound Rule Wizard has opened, select the option to create a custom rule, as shown in the following screenshot. This allows
us to identify all the specific inbound address ranges and ports needed to be effective.

121

On the second page, select the radio button for All programs to apply this rule to all programs:

122

On the third inbound rule screen, specify TCP ports 80 and 443 on the inbound rule, and allow them from all remote ports. This is shown in
the following screenshot:

123

For the scope page, specify the local VPN IP ranges:

10.200.0.0/24 (IPv4)
2001:db8:100::/64 (IPv6)

Then, allow all remote IP addresses by selecting Any IP address (this is the default). Later, when creating the block rule, you will leave the
defaults—both for All Ports on this page.

Tip

You could apply this to the VPN IP ranges as well to only allow the VPN host addresses to contact VPN resources. Omitting this restriction
allows other remote subnets you may desire to route (using --iroute, for example).

124

Next, select Allow the connection from the list of actions. Later, when creating the block rule, you will need to select Block the connection on
this page.

125

Check all three boxes on the Profile page of the wizard. This will allow the rule to function regardless of the interface profile assigned (Public,
Private, or Domain). We will discuss this later.

126

The last page of the inbound rule wizard allows you to set a name. Choose something descriptive that allows an administrator to quickly
identify the rule and how it is applied. In our case, we set the name to VPN – Allow 80, 443 for the allow rule.

Now that the allow rule is created, go through these steps again and create your block rule. This rule will block all traffic from the VPN. When
coupled with the allow rule we already created, it will only allow our VPN clients to connect through the VPN on ports 80 and 443.

Use the following settings for your block rule on each page of the wizard:

Rule Type should be Custom
For the Program option, select All programs
Select All Ports for both local ports and remote ports
Scope should be Any IP address (for local and remote)
Action should be Block the connection
Choose Select all profiles for Profile
Set the Name as VPN – Block All

Once saved, you will have a pair of VPN rules at the top of the list.

Windows Firewall with Advanced Security is a first-match firewall type. This means that as soon as a firewall rule matches a given network
packet, processing of the ruleset stops and the given action in that rule is applied. The Linux iptables packet filter is another first-match
filter. Other packet filters, such as OpenBSD's pf, are last-match, which means the rules continue to process through to the end.

Tip

OpenVPN has a built-in filtering capability, but the code has been untouched for a number of years and requires additional plugins to operate.

127

The developers don't think the code is viable at this time, but the feature may be brought back in the future.

Doing many "server" type tasks on a desktop version of Windows generally requires the administrator to go a bit off the beaten path. Windows
Server 2008, for example, has better firewall editing tools than Windows 7 Professional, which is used in the above example.

Policy-based routing
Policy-based routing utilizes a firewall or other packet filter to route traffic based on not only the source and destination IP addresses, but also
the source or destination ports. One common use of policy-based routing is to send all of the unprotected port 80 traffic across the VPN, but
allow other traffic, such as SSL traffic on port 443, to traverse the general Internet.

Policy-based routing is something that needs to be done at the source. In most cases, this means it will be applied at the OpenVPN client. In
some instances, this can be augmented at the OpenVPN server, but the flexibility is greatly diminished.

Every firewall or packet filtering software handles policy routing differently. We were unable to configure the Windows 7 firewall to route
based on source or destination ports, and even the OpenBSD pf packet filter has specific caveats.

The following figure demonstrates a simple port 80 or port 443 policy routing decision matching our example scenario from the preceding
section:

128

Windows network locations – public versus private
A recurring question on the OpenVPN mailing lists is how to change the network location of OpenVPN's TAP-Win virtual network adapter
from public to private. This question started popping up with the introduction of Windows Vista. The answer to this question is unfortunately
quite lengthy. In this section, we will explore different methods that allow us to change the network location of the TAP-Win adapter on
Windows clients.

Background
Starting with Windows Vista, Microsoft introduced the concept of network locations. In Windows 7, there are three network locations: Home,
Work, and Public. These network locations apply to all network adapters: wired network adapters, wireless adapters, and also OpenVPN's
virtual TAP-Win network adapter.

The Home network location is intended for a home network and provides a high level of trust. It also includes the Home group feature, where a
computer can easily connect to all other devices at home. Similarly, the Work network location provides a high level of trust at work, allowing
the computer to share files, connect to printers, and so on. In Windows 8, the Home and Work network locations are merged together to
become the Private network location.

The Public network location is not trusted and access to network resources, both inbound and outbound, is severely restricted by Windows—
even when the Windows firewall is disabled.

When the Windows firewall is enabled, the Private firewall profile is applied to all network adapters in the Home and Work network locations,
and the Public firewall profile is applied to all network adapters in the Public network location.

For a network adapter to be trusted, it must advertise a default gateway or the network adapter must be part of a Windows domain. There is
some documentation about this online:

http://blogs.technet.com/b/networking/archive/2009/02/20/why-is-my-network-detected-as-unknown-by-windows-vista-or-windows-server-
2008.aspx

When Windows cannot determine the location of a network, it automatically chooses the Public network location. Unfortunately, it is not
possible to change the status when a network adapter is classified as Public.

Changing the TAP-Win adapter location using the redirect-gateway
OpenVPN can set a default gateway on the remote TAP-Win adapter using the configuration directive:

redirect-gateway

Normally, it is recommended that you add the parameter def1 to this option. The def1 option causes OpenVPN to not add a new default
gateway (in network terms, a route 0.0.0.0/0.0.0.0), but rather to add two routes with netmask 128.0.0.0, as explained in the previous
chapter. The disadvantage of the def1 option is that Windows does not recognize the TAP-Win adapter as having a default gateway. For more
details on the different alternatives to the redirect-gateway option, see Chapter 4, Client/Server Mode with tun Devices.

In order to test this option, we add a line to the basic-udp-server.conf file:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody # use 'group nogroup' on Debian/Ubuntu

verb 3

daemon

log-append /var/log/openvpn.log

push "redirect-gateway"

Now, save it as movpn-05-03-server.conf. Start the OpenVPN server using this configuration file and connect a Windows 7 client
using the default basic-udp-client.ovpn configuration.

This time, after the client successfully connects, Windows will ask in which location to place the new network:

129

http://blogs.technet.com/b/networking/archive/2009/02/20/why-is-my-network-detected-as-unknown-by-windows-vista-or-windows-server-2008.aspx

Select the Work network, after which Windows will let you choose your own name and icon for the VPN network:

130

We chose the name VPN, choose a different icon, and click on OK.

The TAP-Win adapter is now trusted and Windows file sharing is allowed over this network, as well as other trusted protocols.

One of the downsides of using redirect-gateway is that the VPN adapter is now the only adapter with a default gateway, and hence is trusted.
The wireless network adapter, connected to the Wi-Fi network eduroam, now lacks a default route and all of a sudden is part of an unidentified
network and is no longer trusted. This can be seen in the following screenshot of the Windows 7 Network and Sharing Center:

131

The biggest disadvantage of using redirect-gateway without def1 becomes apparent when the VPN connection is stopped or dropped. As the
default gateway on the Windows OpenVPN client has been replaced, it is no longer possible to reliably restore the default gateway that existed
before the VPN was started and all Internet connectivity is lost. In most cases, the (wireless) local network connection needs to be restarted for
the gateway to be restored.

Using the Group Policy editor to force an adapter to be private

A second approach to changing the location of the TAP-Win adapter is to use the Windows Group Policy editor. Using this tool, it is possible to
force the TAP-Win adapter (or any unidentified adapter) to be either private or public:

1. Open the Command prompt and start the Group Policy editor:

gpoledit.msc

2. Select Network List Manager policies and double-click on Unidentified Networks in the right-hand side pane, as shown in the
following screenshot:

132

3. A new Unidentified Networks Properties window will pop up. Set the Location Type to Private and click OK, as shown in the
following screenshot:

4. Restart the OpenVPN client without the redirect-gateway flag.

Windows will now automatically mark the adapter as Private and will again ask in which network the adapter should be placed: Home or
Work. However, this time the icon and name of the network type chosen cannot be modified.

Tip

The preceding instructions will set all unidentified networks to Private and could possibly preset other negative security side-effects. Make sure

133

you understand the full implications of this change before setting this.

Changing the TAP-Win adapter location using extra gateways

A more elegant approach to change the adapter location is to add an extra gateway address to the server configuration:

push "route 0.0.0.0 0.0.0.0"

When the OpenVPN client connects, it will add an extra default route to the system routing tables. This route will always have a higher metric
than the regular default gateway, but the adapter is now trusted.

In Windows 7, the metric of an adapter normally is calculated automatically as the sum of the gateway metric and the interface metric. The
interface metrics are based on the type and speed of the adapter. As OpenVPN's TAP-Win adapter is registered as a 10 Mbps adapter, it will
always have a higher metric (that is, it will be less preferable) than wired or wireless adapters, which have higher speeds.

These metrics can be shown using the netsh int ip show config command:

C:\>netsh int ip show config

Configuration for interface "vpn0"

 DHCP enabled: Yes

 IP Address: 10.200.0.2

 Subnet Prefix: 10.200.0.0/24 (...)

 Default Gateway: 10.200.0.1

 Gateway Metric: 70

 InterfaceMetric: 30

 DNS servers configured through DHCP: 192.0.2.12

 Register with which suffix: Primary only

 WINS servers configured through DHCP: 192.0.2.60

Configuration for interface "wifi0"

 DHCP enabled: Yes

 IP Address: 192.0.2.233

 Subnet Prefix: 192.0.2.0/24 (...)

 Default Gateway: 192.0.2.254

 Gateway Metric: 0

 InterfaceMetric: 20

 DNS servers configured through DHCP: 192.0.2.17

 192.0.2.12

 Register with which suffix: None

 WINS servers configured through DHCP: 192.0.2.121

 192.0.2.20

It is possible to turn off the automatic metric calculation and revert to the behavior of older versions of Windows. In order to do this, go the
Advanced TCP/IP Properties dialog of the TCP/IPv4 Properties option of a network adapter:

134

In this case, the metric specified in the TCP/IPv4 Properties window will determine the default route in the system. If the metric of the TAP-
Win adapter is higher than that of the non-VPN adapter, then effectively all traffic is routed over the VPN!

The advantage of this approach is that the old default gateway is left intact, thus avoiding the problem of the lost default gateway when the VPN
connection is dropped or stopped.

Redirecting all traffic in combination with extra gateways

As a final example of how the network location can be influenced using OpenVPN configuration options, we will both add an extra gateway
and redirect the default gateway using def1:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

topology subnet

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody # use 'group nogroup' on Debian/Ubuntu

verb 3

daemon

log-append /var/log/openvpn.log

135

push "route 0.0.0.0 0.0.0.0"

push "redirect-gateway def1"

Save the file as movpn-05-04-server.conf. Start the OpenVPN server using this configuration file and connect a Windows 7 client
using the default basic-udp-client.ovpn configuration.

After the OpenVPN client reconnects, the IPv4 routing table now has the following entries:

The first route is the original gateway. The second route is the extra 0.0.0.0/0 route for the TAP-Win adapter. This causes Windows to trust
the adapter. The third and fourth routes are set by the redirect-gateway def1 command by adding the routes 0.0.0.0/1 and
128.0.0.0.

OpenVPN provides two new routes that are more specific than the default 0.0.0.0/0 route. TCP/IP routing specifies that the more specific
route should always be chosen, regardless of the interface metric. Therefore, all traffic is redirected over the VPN tunnel.

The Network & Sharing Center window now shows both the LAN network and the VPN network as trusted:

The advantages of this approach are as follows:

Both the original network (Wi-Fi eduroam in the preceding example) and the VPN network are trusted. This means file and printer
sharing is available on both networks.
All network traffic is correctly redirected over the VPN, regardless of the interface metrics.
When the VPN connection is dropped or stopped, the original default gateway is correctly restored.

136

A quick check of the link https://www.whatismyip.com will show that all traffic is now routed over the VPN. Another way to verify this is to
use tracert in a Windows command shell:

c:\>tracert -4 -d www

Tracing route to www.nikhef.nl [192.16.199.160]

over a maximum of 30 hops:

 1 95 ms 119 ms 83 ms 10.200.0.1

 3 103 ms 119 ms 83 ms 192.0.2.133

 4 115 ms 101 ms 101 ms 192.16.199.160

Trace complete.

Tip

On Mac OS X, the Tunnelblick client for OpenVPN has the ability to check if the external IP has changed once connected to the VPN, and then
notify the user if that IP does not change.

The first hop in the traceroute output is the VPN server address, which proves that the default gateway of the system is now indeed the
VPN adapter.

137

https://www.whatismyip.com

Using OpenVPN with HTTP or SOCKS proxies
OpenVPN supports operation through an HTTP or SOCKS proxy with no authentication, with basic authentication and with NTLM
authentication. We will cover both HTTP and SOCKS proxy servers, both with and without authentication.

HTTP proxies
HTTP proxies require the use of TCP for the OpenVPN tunnel transport. If you are currently using UDP, the protocol argument in both the
server as well as the client configurations will need to be updated:

proto tcp

Once configured, add proxy support to the client by adding the --http-proxy configuration directive. As an example, let's assume your
local area network requires an anonymous proxy for outbound connections and that server is at 192.168.4.4 on the default port 1080. Your
configuration would be something like this:

http-proxy 192.168.4.4 1080 none

This will allow your OpenVPN client connection to connect to your remote OpenVPN server through the proxy server on your local network.
An authenticated HTTP proxy isn't much different, simply replace none in the preceding command with the authentication information:

http-proxy 192.168.4.4 1080 stdin basic

The preceding command connects to the same proxy server and port as we did before, but queries on standard input for the username and
password to use for HTTP basic authentication. Additionally, support authentication methods include an auth file, which is similar to the core
OpenVPN password file—just a username and password in clear text on two separate lines:

someuser

somepass

The auth file path and filename are passed in place of the stdin keyword in the preceding example. Setting auto allows OpenVPN to
determine where to query credentials from, including via the management console.

Some HTTP proxies may restrict access or authentication based on the HTTP user agent passed, or other HTTP options. These can be defined
using the http-proxy-option configuration argument for almost any arbitrary HTTP option. Common examples are the user agent string
and the HTTP version string:

http-proxy-option VERSION 1.1

http-proxy-option AGENT "Definitely NOT OpenVPN"

All of these options can be defined in the standard OpenVPN client configuration or on the command line at run time.

If you want to have OpenVPN retry connections to a flapping HTTP proxy, specify the --http-proxy-retry option. This will result in
OpenVPN mimicking a SIGUSR1 reset on the OpenVPN process, causing a reconnection of the tunnel.

SOCKS proxies
In addition to HTTP proxies, OpenVPN supports SOCKS proxies. If you want to understand more about the differences between HTTP and
SOCKS proxies, Wikipedia has a good comparison at http://en.wikipedia.org/wiki/SOCKS or you can review the protocol-specific Request For
Comments (RFC) at the following URLs:

SOCKS5: https://www.ietf.org/rfc/rfc1928.txt
HTTP: https://www.ietf.org/rfc/rfc2616.txt

For our examples, we'll again assume a proxy server 192.168.4.4 on the default port 1080. But this time, it will be a SOCKS5 proxy.
Unlike the HTTP proxy example, it is permissible to use either UDP or TCP for the tunnel transport with a standard SOCKS5 proxy server.
However, there are caveats to this.

Add the following line to your OpenVPN client configuration to point it to our example proxy server:

socks-proxy-server 1080 socks_auth.txt

Like with the other authentication files, a plain text file with username and password on separate lines suffices:

socks5user

socks5pass

As earlier, stdin works in place of the path and filename for the auth file. Also, if reconnection/retry is desired when a connection is lost or
falters to the proxy server, specify the option --socks-proxy-retry to allow OpenVPN to mimic a SIGUSR1 to restart the VPN.

Tip

You can use the SSH protocol to create a SOCKS5 local server and tunnel OpenVPN through that tunnel. One restriction to doing this is that the
SSH SOCKS5 proxy requires TCP-only connections. Your traffic within OpenVPN can be TCP/UDP, but the OpenVPN tunnel itself must be -
-proto tcp.

138

http://en.wikipedia.org/wiki/SOCKS
https://www.ietf.org/rfc/rfc1928.txt
https://www.ietf.org/rfc/rfc2616.txt

139

Summary
In this chapter, you learned how to integrate OpenVPN into your existing network and computer infrastructure. This applies to the server side.
We also saw how to use LDAP as a backend authentication system, and how to use policy-based routing to seamlessly integrate the VPN
offered by OpenVPN into the regular network. On the client side, we addressed the integration of OpenVPN in to the Windows operating
system, as well as a scenario where the OpenVPN server cannot be contacted directly.

These are, of course, only a few examples of advanced deployment scenarios, and we were restricted to tun mode only. This was done on
purpose so that we could show that tun mode is suitable for most OpenVPN deployments. There are deployment scenarios that require tap mode
or even bridging, and these are covered in the next chapter.

140

Chapter 6. Client/Server Mode with tap Devices
The other deployment model for OpenVPN is a single server with multiple remote clients capable of routing Ethernet traffic. We refer to this
deployment model as client/server mode with tap devices.

The main difference between tun and tap mode is the type of adapter used. A tap adapter provides a full virtual Ethernet (layer 2) interface,
whereas a tun adapter is seen as a point-to-point (layer 3) adapter by most operating systems. Computers connected using (virtual) Ethernet
adapters can form a single broadcast domain, which is needed for certain applications. With point-to-point adapters, this is not possible. Also,
note that not all operating systems support tap adapters. For example, both iOS and Android support tun devices only.

In this chapter, we start with a basic client/server setup, which is very similar to the basic setup described in Chapter 4, Client/Server Mode with
tun Devices. However, there are subtle differences that will be discussed using several examples. Also, tap mode enables a bridging setup,
where a regular network adapter is bridged with the virtual tap adapter. This topic will be discussed in detail for both the Linux and Windows
operating systems.

The following topics will be covered in this chapter:

Basic setup
Enabling client-to-client traffic using pf
Bridging
Bridging on Linux
Bridging on Windows
Using an external DHCP server
Checking broadcast and non-IP traffic
Comparing tun mode to tap mode

The basic setup
The basic setup for OpenVPN in tap mode is almost exactly the same as in the tun mode. In tap mode, we use the following line in the server
configuration file:

dev tap

While in tun mode, we use the following lines:

dev tun

topology subnet

The option topology subnet is not required, but provides a network addressing scheme that is more sensible and will be the default in a
future version of OpenVPN.

For the sake of completeness, we first create the server configuration file:

proto udp

port 1194

dev tap

server 10.222.0.0 255.255.255.0

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

We will reuse this basic tap-mode server configuration file in this chapter and others. Save it as tap-udp-server.conf so that we can
reuse it later.

Note

The topology subnet option was removed as the topology option is a tun-specific configuration option. In tap-mode, the server will
always hand out a single IP address to each client, with a corresponding netmask.

Similarly, we create the client configuration file, which is again nearly identical to the basic-udp-client.conf file from Chapter 4,
Client/Server Mode with tun Devices:

141

proto udp

port 1194

dev tap

client

remote openvpnserver.example.com

nobind

remote-cert-tls server

tls-auth /etc/openvpn/movpn/ta.key 1

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/client1.crt

key /etc/openvpn/movpn/client1.key

Save this file as tap-udp-client.conf. Similarly, for Windows clients, create the configuration file tap-udp-client.ovpn.

Start the OpenVPN server and connect a client using these configuration files. The server-side connection log shows some subtle differences
compared to the tun-based setup, which are highlighted in the following section:

OpenVPN 2.3.6 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [MH] [IPv6] built

on Dec 2 2014

library versions: OpenSSL 1.0.1e-fips 11 Feb 2013, LZO 2.03

[…]

TUN/TAP device tap0 opened

TUN/TAP TX queue length set to 100

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tap0 up mtu 1500

/sbin/ip addr add dev tap0 10.222.0.1/24 broadcast 10.222.0.255

GID set to nobody

UID set to nobody

UDPv4 link local (bound): [undef]

UDPv4 link remote: [undef]

MULTI: multi_init called, r=256 v=256

IFCONFIG POOL: base=10.222.0.2 size=253, ipv6=0

Initialization Sequence Completed

CLIENT_IP:60728 TLS: Initial packet from [AF_INET]CLIENT_IP:60728, sid=d4d7f1fd 988e4ff3

[…]

client1/CLIENT_IP:60728 PUSH: Received control message: 'PUSH_REQUEST'

client1/CLIENT_IP:60728 SENT CONTROL [client1]: 'PUSH_REPLY,route-gateway 10.222.0.1,ping

10,ping-restart 60,ifconfig 10.222.0.2 255.255.255.0' (status=1)

client1/CLIENT_IP:60728 MULTI: Learn: 8e:66:e4:43:35:a1 -> client1/CLIENT_IP:60728

The last line of the server connection log is actually the most interesting one: the MULTI: Learn line shows that the server is now using the
MAC address of the remote client to distinguish it from other clients, whereas in tun-mode it could rely solely on the IP address assigned to the
client. This is necessary as a tap-based client can also send non-IP traffic in which no IP address is used.

142

Enabling client-to-client traffic
When multiple Virtual Private Network (VPN) clients are connected to the server, they are not permitted to exchange traffic. This is true for
both tap mode and tun mode. In order to enable client-to-client traffic, there are two options:

Use the configuration option client-to-client. This allows OpenVPN to handle client-to-client traffic internally, bypassing the
system routing tables as well as the system firewall/iptables rules.
Use the system routing tables and firewall/iptables rules to send traffic from one client to another and back.

The first option is the fastest option, both in terms of configuration and in terms of performance. If there are no restrictions on the traffic
between VPN clients, add the line client-to-client to the configuration file tap-udp-server.conf, save it as movpn-06-01-
server.conf, and restart the OpenVPN server using this configuration file:

$ openvpn --config movpn-06-01-server.conf

Reconnect the VPN clients. The first client is assigned IP address 10.222.0.2 and the second client 10.222.0.3. The clients can now reach each
other:

The high latency (that is, a ping time of more than 300 ms) in the preceding screenshot, immediately shows one of the drawbacks of using
client-to-client traffic over a VPN. All traffic flows via the OpenVPN server, thus a ping from client1 to client2 takes longer:

1. The ping request message is sent from client1 to the OpenVPN server.
2. The OpenVPN server forwards the message to client2.
3. client2 sends back a ping reply message, again to the server.
4. The OpenVPN server forwards the ping reply back to client1.

If the VPN clients are connected over a high-latency network, then the use of a client/server-model VPN will increase the latency when sending
traffic between clients. OpenVPN is such a client/server-model VPN, as are most commercial VPN solutions available. Some peer-to-peer VPN
solutions exist, but they are outside the scope of this book.

Filtering traffic between clients
A drawback of the client-to-client option is the lack of filtering. When this option is added, all traffic between all clients is allowed,
bypassing the system firewall/iptables rules.

A second method of allowing traffic to flow between clients is to use the system's routing tables. In tun mode, this is quite easy to achieve, but it
is a little trickier when using tap mode. When client1 wishes to reach client2, it will first need to know the MAC (hardware) address of
client2. An ARP request is sent out over the client's tap adapter and reaches the OpenVPN server. The OpenVPN server process forwards
the ARP request out of its own tap adapter and waits for the response. However, the response needs to come from another VPN client, which is
connected to the same tap adapter. Thus, the ARP request needs to be sent back out to all connected clients by the OpenVPN server. Normally,
this reissuing of the ARP request is not done and client-to-client traffic fails.

On modern Linux kernels (2.6.34+ or kernels with back-ported options), a special proxy_arp_pvlan flag can be set per interface. This flag
instructs the Linux kernel to resend the ARP request back out of the same interface from where it came. It is exactly this flag that is needed for
client-to-client traffic to work. Thus, we enable client-to-client traffic in tap mode without using the client-to-client option by setting
this flag:

echo 1 > /proc/sys/net/ipv4/conf/tap0/proxy_arp_pvlan

Note

This system flag can only be set after the tap0 adapter has been set up. The tap adapter can be created prior to starting OpenVPN (see the
Bridging on Linux section) or the flag can be set after OpenVPN has started. In that case, it can be set automatically using an up script, as
explained in Chapter 7, Scripting and Plugins.

When client1 wishes to reach client2, the flow of network traffic with this flag set is as follows:

1. client1 sends an ARP request out its tap adapter.

143

2. The OpenVPN server receives the ARP request and forwards it out of its own tap0 adapter.
3. The ARP request passes through the system routing and iptables forward table.
4. If the request is allowed through, the request is sent out to all network interfaces on the OpenVPN server, including the tap0 adapter

where it originated. The latter is caused by the proxy_arp_pvlan flag.
5. OpenVPN receives the ARP request and forwards it out to all connected OpenVPN clients.
6. client2 receives the request and responds. An ARP reply is now sent back to the OpenVPN server.
7. The OpenVPN server forwards the ARP reply to client1.
8. client1 now knows where to find client2 and can send network traffic to client2.

The second step allows us to filter out traffic between different clients. Filtering rules (for example, using iptables) can be added to allow
only certain types of traffic, or only traffic between special clients. For example, the following iptables rule will block traffic between the
first and second OpenVPN client:

iptables -I FORWARD -i tap0 -o tap0 \

 -s 10.222.0.2 -d 10.222.0.3 -j DROP

Note that by blocking traffic in one direction, both clients cannot reach each other. For unidirectional blocking, more advanced iptables rules are
required.

Note

There does not seem to be an equivalent for the proxy_arp_pvlan flag on the Windows or Mac OS operating systems.

Disadvantage of the proxy_arp_pvlan method

A major disadvantage of using this special kernel flag is that it does not turn the VPN into a single Ethernet broadcast domain. With the
proxy_arp_pvlan flag, the VPN clients can reach each other using ARP messages. However, they will not receive broadcast traffic coming
from other clients. When the client-to-client option is used, all connected VPN clients automatically receive each other's broadcast
messages, but filtering traffic is harder (as we will see in the next section).

Filtering traffic using the pf filter of OpenVPN

A second method to filter traffic from OpenVPN clients is to use OpenVPN's built-in pf filter. This filter is also fully supported in OpenVPN
Access Server, the commercial offering from OpenVPN Technologies, Inc. The pf filter support is rudimentary compared to most firewalls, but
is fully functional and supported on all platforms. We will now go through the steps to use this filter in the open source version of OpenVPN.
This example is given only as a proof of concept; it will become clear that for a production-level service a different approach and/or tool is
needed.

In order to use the pf filter, the management interface of OpenVPN must be used. This is achieved with the following configuration file:

proto udp

port 1194

dev tap

server 10.222.0.0 255.255.255.0

persist-key

persist-tun

keepalive 10 60

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

client-to-client

management 127.0.0.1 12000 stdin

management-client-auth

management-client-pf

Save this file as movpn-06-02-server.conf and start the OpenVPN server. The OpenVPN server will ask for a (new) management
password. This password will be used to authenticate all connections to the management interface; VPN clients are authenticated separately.
The management-client-pf option requires that the management-client-auth option is also set. The downside of this is that each
client must now supply a (bogus) username and password, and that each client must be granted access on the server side, using the management
interface.

The client configuration file now becomes:

proto udp

144

port 1194

dev tap

client

remote openvpnserver.example.com

nobind

remote-cert-tls server

tls-auth /etc/openvpn/movpn/ta.key 1

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/client1.crt

key /etc/openvpn/movpn/client1.key

auth-user-pass

Save it as movpn-06-02-client.conf (or movpn-06-02-client.ovpn for Windows).

On the server side, first start the management interface using telnet:

telnet 127.0.0.1 12000

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '^]'.

ENTER PASSWORD:

SUCCESS: password is correct

>INFO:OpenVPN Management Interface Version 1 -- type 'help' for more info

Next, start the OpenVPN client. The connection to the server will not be completed until the client is granted access via the management
interface. In the management interface, you will now see this:

>CLIENT:CONNECT,0,0

>CLIENT:ENV,n_clients=0

>CLIENT:ENV,IV_VER=2.3.6

>CLIENT:ENV,IV_PLAT=linux

>CLIENT:ENV,IV_PROTO=2

[…]

After getting all the >CLIENT lines, authorize the client to connect. For this, the Client Identifier (CID) and Key Identifier (KID) are
required. They are the parameters on the very first >CLIENT lines when the OpenVPN client connects. In this example, both CID and KID are
0. To grant this client access, the command client-auth-nt CID KID must be entered in the management interface:

client-auth-nt 0 0

SUCCESS: client-auth command succeeded

>CLIENT:ESTABLISHED,0CLIENT:CONNECT,0,0

The first OpenVPN client is now granted access. We can now apply access control rules to this client using the command client-pf CID.
This is a multiline command. After the first line, we first specify the subnets that this client is allowed to access:

[SUBNETS ACCEPT]

-10.0.0.0/8

We grant the client access to all subnets except 10.0.0.0/8.

Next, we specify which clients this client is allowed to reach:

[CLIENTS ACCEPT]

-client3

We allow the client to contact all other VPN clients except the client with the certificate name /CN=client3. With the two END statements,
one with brackets and one without, we close the client-pf command:

client-pf 0

[SUBNETS ACCEPT]

-10.0.0.0/8

[CLIENTS ACCEPT]

-client3

[END]

END

SUCCESS: client-pf command succeeded

This OpenVPN client will now be able to reach all subnets on the server side, except 10.0.0.0/8, and it is allowed to contact all other OpenVPN
clients except client3.

There are many disadvantages to using this approach, but it does work on all platforms. The main disadvantages are as follows:

Each client must supply a bogus username/password
Each client must be authenticated using the management interface
For each client, a pf filter must be set up
The management interface currently does not have any commands to view the current filters

145

There is currently no tool for the open source version of OpenVPN to send these commands to the management interface. The commercial
OpenVPN Access Server software, however, provides the needed mechanism to apply the filter rules.

146

Using the tap device (bridging)
A special use case for a tap-based configuration is bridging. The term bridging applies to a feature of the operating system to bridge two
network adapters together. When two (or more) adapters are bridged, all Ethernet traffic that is received on one of the adapters is forwarded out
to all other adapters that are part of that bridge. This makes it possible to join (bridge) two network segments together and make it appear as if it
is a single Ethernet broadcast domain. Common use cases for bridges are as follows:

The VPN clients need to be fully and transparently integrated into the server-side LAN. Note that the same effect can often be achieved
using a proxy-arp setup.
Some older computer games only allow multiuser games when all computers are part of the same broadcast domain.
Some legacy network protocols, notably the original Microsoft NetBIOS (non-TCP/IP-based) protocol, do not work well across network
routers, or even assume a fully "flat" network space with all clients connected directly.

Bridging has drawbacks too, most notably the loss of performance. All network traffic entering one of the bridge interfaces is replicated out
through all other interfaces. Because of this, it is quite easy to overload a bridge with multicast or broadcast traffic. Especially in a VPN setup
with clients using high-latency or low-bandwidth connections (for example, road warriors in a hotel), this performance loss can quickly make an
OpenVPN setup unusable.

It should also be observed that a bridged setup is often not necessary. With modern operating systems and file sharing protocols, a tun-based
setup can achieve the same results using less effort and with greater performance.

It is unfortunately still a common misconception that bridging is needed in order to use Windows file sharing over an OpenVPN setup. In the
section Enabling file sharing over VPN of Chapter 5, Advanced Deployment Scenarios in tun Mode, a detailed explanation is given on how to
achieve file sharing using a tun-based setup and a WINS server.

In some cases, a bridged setup remains desirable or necessary. We will now show how to set up a bridged OpenVPN configuration on both the
Linux and Windows platforms.

Bridging on Linux
Consider the following network layout:

On the server side, a network bridge is used between the LAN adapter eth0 and the OpenVPN virtual tap adapter. On Linux, this is achieved
by creating the tap adapter prior to starting OpenVPN. For this, the system package bridge-utils needs to be installed. The steps are as
follows:

1. First, we create a script to start the network bridge:

#!/bin/bash

br="br0"

tap="tap0"

eth="eth0"

br_ip="192.168.122.1"

br_netmask="255.255.255.0"

br_broadcast="192.168.122.255"

Create the tap adapter

openvpn --mktun --dev $tap

Create the bridge and add interfaces

brctl addbr $br

brctl addif $br $eth

brctl addif $br $tap

Configure the bridge

ifconfig $tap 0.0.0.0 promisc up

ifconfig $eth 0.0.0.0 promisc up

ifconfig $br $br_ip netmask $br_netmask broadcast $br_broadcast

2. Save it as movpn-bridge-start and make sure it is executable using the following command:

chmod 755 movpn-bridge-start

3. Next, start the bridge using the following command:

./movpn-bridge-start

147

Mon Jan 5 18:40:02 2015 TUN/TAP device tap0 opened

Mon Jan 5 18:40:02 2015 Persist state set to: ON

4. Now we create a configuration file for bridged setups using the following commands:

tls-server

proto udp

port 1194

dev tap0 ## the '0' is extremely important

server-bridge 192.168.122.1 255.255.255.0 192.168.122.128 192.168.122.200

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

persist-key

persist-tun

keepalive 10 60

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

5. Save it as movpn-06-03-server.conf. The arguments to the server-bridge option are network gateway, subnet mask, pool
start, and pool end. The pool addresses are those that can be assigned to clients.

Note

The line dev tap0 in the preceding example is crucial for a bridged setup to work. We have created the tap adapter for the bridge
prior to starting OpenVPN. In order to use this adapter, we must explicitly specify the name of the adapter. Otherwise, OpenVPN will
create a new, non-bridged adapter at startup.

6. Start the OpenVPN server and connect the client using the tap-udp-client.conf configuration file created earlier in this chapter.
On a Linux client, the connection log will show the following:

TUN/TAP device tap0 opened

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tap0 up mtu 1500

/sbin/ip addr add dev tap0 192.168.122.128/24 broadcast 192.168.122.255

Initialization Sequence Completed

The client is assigned the first address, 192.168.122.128, from the pool of available addresses.
7. Finally, we verify that we can reach a host on the server-side LAN:

[client]$ ping -c 4 192.168.122.246

PING 192.168.122.246 (192.168.122.246) 56(84) bytes of data.

64 bytes from 192.168.122.246: icmp_req=1 ttl=64 time=287 ms

64 bytes from 192.168.122.246: icmp_req=2 ttl=64 time=289 ms

64 bytes from 192.168.122.246: icmp_req=3 ttl=64 time=285 ms

64 bytes from 192.168.122.246: icmp_req=4 ttl=64 time=287 ms

--- 192.168.122.246 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3003ms

rtt min/avg/max/mdev = 285.397/287.496/289.568/1.570 ms

Tearing down the bridge

When the OpenVPN server process is stopped, the network bridge is not automatically shut down as well. As the bridge was created before
OpenVPN itself was started, the bridge persists until it is torn down manually. The following commands stop and remove the bridge created
with the movpn-start-bridge command:

ifconfig br0 down

brctl delif br0 eth0

brctl delif br0 tap0

brctl delbr br0

openvpn --rmtun --dev tap0

Bridging on Windows
Consider the following network layout:

148

The only difference between the previous network layout and this one is the choice of IP addresses used.

On Windows, the OpenVPN TAP-Win adapter is installed when OpenVPN itself is installed. Usually, the name for the TAP-Win adapter is
assigned by the operating system and will be something similar to Local Area Connection 4. Likewise, the name of the Ethernet adapter to
which the local area network is attached will also have a name like Local Area Connection 2.

For clarity (and some sanity), we want to rename the VPN (TAP) interface:

1. First we go to the Network and Sharing Center and then Change adapter settings.
2. Rename the TAP-Win adapter as tapbridge by right-clicking on it and selecting Rename. On the test computer used, the Ethernet

adapter connected to the LAN was renamed to eth0. In the Status column, note the network group to which the interface belongs. In
our case, it belongs to TheShire.

3. Select the two adapters that need to be bridged by pressing the control key and clicking on each adapter, then right-clicking and
selecting Bridge Connections.

4. Ensure that the newly created Network Bridge is part of the same network as the original eth0 adapter. You can also see that the
original LAN adapter now has the label Bridged in the Status field:

149

5. There is no need to configure a static IP address for the bridge. The Network Bridge has its own (virtual) MAC address (or Physical
Address in the following screenshot) and hence is assigned its own IP address by the DHCP server on the server-side LAN:

6. Create the OpenVPN server configuration file using a text editor or Notepad:

tls-server

proto udp

port 1194

dev tap

dev-node tapbridge ## == the name of the TAP-Win adapter

server-bridge 192.168.3.15 255.255.255.0 192.168.3.128 192.168.3.250

remote-cert-tls client

tls-auth "c://program files/openvpn/config/ta.key" 0

dh "c://program files/openvpn/config/dh2048.pem"

ca "c://program files/openvpn/config/movpn-ca.crt"

150

cert "c://program files/openvpn/config/server.crt"

key "c://program files/openvpn/config/server.key"

persist-key

persist-tun

keepalive 10 60

verb 3

Save the configuration file as movpn-06-04-server.ovpn in the OpenVPN configuration directory (usually C:\Program
Files\OpenVPN\config).

Note

The server configuration file for the Windows version of OpenVPN is similar to the configuration file for Linux. The major differences
are the full paths for the certificate and key files, plus the way the TAP-WIN adapter is specified using the keyword dev and dev-
node. Also note that the user/group and daemon/logging options have been removed.

7. Start the OpenVPN server (using elevated privileges):

C:> cd \program files\openvpn\config

C:> ..\bin\openvpn --config movpn-06-04-server.ovpn

Notice that the command-line version of OpenVPN on Windows looks and behaves almost exactly the same as the Linux command-line
version.

8. The Windows firewall will pop up a security warning when OpenVPN attempts to set up the VPN. Click on Allow Access to grant
OpenVPN permission to set up the VPN, as shown in the following screenshot:

9. If we go back to the Adapter Settings screen now, we will see that both the LAN adapter eth0 and the TAP-Win adapter tapbridge are
Enabled and have the status Bridged. This is shown in the following screenshot:

151

10. Next, connect a Windows client using the tap-udp-client.ovpn configuration file created earlier in this chapter. The client will
be assigned the first address, 192.168.3.128, from the pool of available addresses.

11. Finally, we verify that we can reach a host on the server-side LAN:

12. On the server, press the F4 function key in the command window to stop the OpenVPN server process. For a production-level setup, it is
desirable to start and stop OpenVPN using the OpenVPN service that is installed along with OpenVPN.

152

Using an external DHCP server
In a bridged setup, it is possible to integrate the clients into the server-side network even further. In most networks, a DHCP server is used to
assign IP addresses. Normally, OpenVPN assigns IP addresses to its clients using either the following command:

server 10.200.0.0 255.255.255.0

Or, using the following command:

server-bridge 192.168.3.15 255.255.255.0 192.168.3.128 192.168.3.250

It is also possible to use an external DHCP server to assign addresses to the OpenVPN clients. To achieve this, simply remove the specification
of any IP address ranges after the server-bridge option, as shown in the following (Linux-oriented) configuration file:

tls-server

proto udp

port 1194

dev tap0 ## the '0' is extremely important

server-bridge

remote-cert-tls client

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

persist-key

persist-tun

keepalive 10 60

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

Save it as movpn-06-05-server.conf and start the OpenVPN server.

When a client connects and requests an IP address using DHCP, the request will be forwarded to the DHCP server on the server-side LAN. The
DHCP server assigns an address, which is sent back to the client via the OpenVPN server.

On the OpenVPN client, this can be verified by checking the IP address of the vpn0 connection:

To verify that this address was assigned by the server-side DHCP server, we check the DHCP clients table on the DHCP server:

153

The third entry in the DHCP Client Table in the preceding screenshot lists the MAC Address of the TAP-Win adapter of the OpenVPN client.
This proves that the server-side DHCP server assigned the address to the OpenVPN client.

154

Checking broadcast and non-IP traffic
The tcpdump and wireshark tools are useful for troubleshooting an "almost-working" OpenVPN setup. Wireshark is available for Linux, Mac
OS X, and Windows. It can be used as a command-line tool but most often the GUI-based version is used. On most Unix/Linux-based
platforms, the command-line tool tcpdump is also available.

We will now use tcpdump and wireshark to view the flow of packets over a tap-based VPN setup.

Address Resolution Protocol traffic
One of the most basic types of Ethernet traffic present on all networks is Address Resolution Protocol (ARP) traffic. ARP is a prime example
of an Ethernet protocol that does not travel across point-to-point links (such as tun-based OpenVPN setups). The physical layer (layer 1) is
generally an electrical or optical connection between systems. In the case of a VPN, the tunnel takes the place of that physical connection. The
next step in the OSI model is the Ethernet layer (layer 2). The ARP protocol is often used to discover other systems at this layer.

Tip

Ethernet is a layer 2 network protocol, whereas a point-to-point link is a layer 3 network protocol. The various protocol layers are defined by the
Open Systems Interconnection (OSI) model (https://en.wikipedia.org/wiki/OSI_model).

To watch the flow of ARP traffic, we first launch an OpenVPN server using the configuration file movpn-06-01-server.conf created
earlier. We then connect two Linux clients to the server. After all connections have been successfully established, we start tcpdump on one of
the clients:

tcpdump -nnel -i tap0

Now we send a single ping packet from one client to the other and look at the tcpdump output:

The screenshot shows the ARP traffic between client1 (10.200.0.10 in this case) and client2 (10.200.0.11).

The first packet in the output above is from the client from which the ping was initiated. The client needs to know the Ethernet MAC
address of the machine we are pinging and hence it sends out an ARP request.
Because we specified client-to-client in the server configuration file movpn-06-01-server.conf, the ARP request is
forwarded out to all connected clients and the second OpenVPN client responds with its MAC address.
The second packet is the reply from the second client indicating its own MAC address.
Now that the address is known, client1 sends the ping. This is captured as an IPv4 ICMP echo request.
An answer is received from the second client. This is the fourth packet (IPv4 ICMP echo reply).

NetBIOS traffic
Common Internet File Sharing (CIFS) started out as a proprietary protocol, NetBEUI. Support for sharing files and printers was over Novell's
Internetwork Packet eXchange (IPX) protocol, and later TCP/IP was added. Nowadays, the Windows file sharing protocol has evolved and is
supported only via TCP/IP. Support for the legacy file protocols is still present in older versions of Windows and it is this legacy support which
we will use to trigger non-IP traffic.

First we install and enable the NWLink IPX/SPX transport protocol on the TAP-WIN adapter. Then we connect the Windows client to an
OpenVPN setup that was launched using the configuration file movpn-06-01-server.conf. This configuration has client-to-

155

https://en.wikipedia.org/wiki/OSI_model

client enabled; thus all connected clients should see all Ethernet broadcast traffic coming from this client.

When the Windows client has successfully connected to the VPN server it will start sending out traffic to announce its name and other Windows
file sharing information. It will attempt to do this over TCP/IP, but also using IPX messages.

We use Wireshark on a second VPN client and watch for traffic on the tap interface. The next screenshot shows that the Windows client
WINDOWSXP is indeed sending out broadcast NetBIOS traffic over TCP/IP. These are the entries with source address 10.222.0.3 and
destination address 10.222.0.255. The latter address is the TCP/IP broadcast address for the VPN we have set up. We also see traffic being
broadcast using the IPX protocol. This traffic is selected and highlighted in the screenshot:

The IPX broadcast messages are Ethernet broadcast messages, but they are non-IP-based. This shows that a tap-style OpenVPN setup with
client-to-client does share all Ethernet traffic, including broadcast traffic, between the connected clients (and the OpenVPN server
itself).

156

Comparing tun mode to tap mode
As we have seen so far in this chapter, there are many similarities, but also some significant differences between a tun-style VPN and a tap-style
VPN. In this section, we will discuss those similarities and differences. Most of the differences stem from the single fact that a tun-style VPN is
a non-broadcast, point-to-point IP-only network, whereas a tap-style network provides a fully virtual, Ethernet-like network with broadcast
support. In short, a tun-style network provides layer 3 network connectivity, whereas a tap-style network provides almost all the functionality of
a layer 2 network.

Especially with the topology subnet option, a tun-based setup resembles a non-bridged tap-based setup:

The option server 10.200.0.0 255.255.255.0 sets up a VPN with a server address of 10.200.1/24. Each client will receive a
single /24 IP address, starting at 10.200.0.2/24.
The way the VPN traffic is encrypted and digitally signed (HMAC) is identical.
Most scripting capabilities apply to both types of VPN. However, there are some subtle differences in the parameters for the client-
connect script.
When properly configured, an end user will not experience any difference between a tun-based setup and a tap-based VPN.

The differences are, of course, much more interesting to discuss. Some differences are obvious, but there are also some subtle differences that
can have a major impact when setting up a VPN.

Layer 2 versus layer 3
In a layer 2 network (that is, tap-style), neighboring clients can reach each other by probing the address of a neighbor using ARP broadcasts.
The ARP broadcasts allow the clients to discover the MAC address of the other clients. This allows the clients to reach each other over both IP
and non-IP protocols.

In a layer 3 network (tun-style), the clients can reach each other only by using IP addresses. The MAC address of the tun adapter is never
revealed to the other VPN clients or even to the OpenVPN server itself. Because of this, a layer 3 network packet is slightly shorter than a layer
2 network packet. Under normal circumstances, the longer layer 2 network packets will not have a negative impact on performance.

Routing differences and iroute
Especially when subnet-to-subnet routing is needed, there are some significant differences between tun and tap. In a tun-style network, a client
configuration file with an appropriate iroute statement is needed to allow the VPN server to reach clients residing on a client-side LAN. As
an example, we assume that subnet 192.168.3.0/24 can be reached via the OpenVPN client with the certificate CN=client1. On the
OpenVPN server, we would add a client-config-dir file with the name client1 containing a statement:

iroute 192.168.3.0 255.255.255.0

We would add a system route to the server configuration file:

route 192.168.3.0 255.255.255.0

In a tap-style setup, the iroute statement is not valid and will simply be ignored by the server. In order to reach a subnet behind a VPN client,
a system route must be added on the OpenVPN server with the gateway pointing to the VPN IP address of the client. Let's assume that
client1 from the preceding example is assigned a fixed IP address. This can be achieved using a CCD file:

ifconfig-push 10.200.0.99 255.255.255.0

In the server configuration file, a route needs to be added to ensure that the system routing tables know that subnet 192.168.3.0/24 can be
reached via client 10.200.0.99:

route 192.168.3.0 255.255.255.0 10.200.0.99

This is far less dynamic than the tun-style route+iroute option.

Client-to-client filtering
In a tun-style setup, most traffic can be logged and filtered using firewall or iptables rules. Filtering traffic between OpenVPN clients is much
harder to do in a tap-style setup, as was demonstrated earlier in this chapter.

Broadcast traffic and "chattiness" of the network
A layer 3 network does not allow broadcast traffic to be passed over it. This is both an advantage and a disadvantage. Some client/server
applications rely on the use of broadcast traffic to communicate between the server and the clients. For such applications, a tap-style network is
required.

However, broadcast traffic tends to pollute networks as well. Even if there is no user activity on a client, the operating system will continually
send broadcast traffic to discover network resources, neighbors, and so forth. Especially when protocols such as Universal Plug-and-Play or
Apple's Bonjour are used, there is a lot of hidden broadcast traffic. For clients connected to a VPN over a low-bandwidth network, this can have
serious performance implications.

Bridging
The key feature of a tap-style network is the ability to do bridging. Bridging is not possible in a layer 3 network.

157

In some rare cases, this feature is absolutely required, but a bridged setup should be avoided whenever possible. The main reason for not using a
bridged setup is the negative impact on performance. As explained earlier, in a bridged setup all traffic from the server-side LAN is forwarded
out over the VPN to all clients, and vice versa. When many clients are connected over low-bandwidth networks, this can cause the entire
network to come to a crawl, on both the client side and even on the server-side LAN. When clients on the server-side LAN are attempting to
discover the available resources on the network (for example, file shares or printers in a CIFS-based network), the entire network will be filled
with broadcast traffic. The LAN clients will typically wait for responses from all machines connected to the network, both LAN and VPN,
before offering access to network shares or printers. This can quickly lead to unacceptable network response times when many VPN clients are
connecting and disconnecting.

158

Summary
In this chapter, we explored the capabilities of a tap-based setup as an alternative deployment model for OpenVPN. We discussed examples
highlighting both features and disadvantages of such a setup. Special attention was given to bridged setups, as there are some common
misconceptions about bridged mode, as found on OpenVPN Internet support forums.

We also saw that advanced management features, such as filtering traffic between OpenVPN clients, are much harder to achieve in tap mode
compared to tun mode.

In the next chapter, we will see how we can use scripts and plugins to influence the way in which an OpenVPN server assigns an IP address to a
client, as well as many other features. Scripts and plugins can be used in tap mode as well as tun mode.

159

Chapter 7. Scripting and Plugins
Once deployed, a personal or enterprise VPN can be a powerful tool both with regard to security as well as functionality. A well-engineered
VPN will allow users to connect to distant resources securely. Sometimes, however, just having a VPN isn't quite enough. A given application
may mandate more strict security standards or require better monitoring and control.

Integrating plugins and scripting with OpenVPN can resolve many of these organizational or functional necessities. This chapter will
demonstrate how plugins can be used to enhance authentication and how scripting can track connections, generate routing tables, and do much
more.

Scripting
Scripting is likely one of the best tools available to an OpenVPN administrator. With the ability to designate both client-side and server-side
scripts, OpenVPN can initiate other system responses by opening firewalls, running applications, or even sending a message to an administrator.

One important caveat when writing scripts is the time it takes for a script to complete. OpenVPN is a single-threaded process, which means that
while a script is running the entire VPN is blocked to all connected or connecting clients. A slow authentication script can cripple a well-
functioning VPN. Plugins are less affected by this, as they do run in a separate thread.

As of Version 2.3.6, OpenVPN supports 13 server-side scripting options and 10 client-side options. The commands with asterisks are setup
options, and allow the options that follow to do specific things. The server-side scripts are as follows (in the order of execution):

--setenv*

--setenv-safe*

--script-security*

--up-restart*

--up

--route-up

--tls-verify

--auth-user-pass-verify

--client-connect

--learn-address

--client-disconnect

--route-pre-down

--down

On the client side, the scripts are as follows (in the order of execution):

--setenv*

--script-security*

--up-restart*

--tls-verify

--ipchange

--setenv-safe*

--up

--route-up

--route-pre-down

--down

We will now go through all of these options in brief, explaining their function on both the server side and the client side. Later in this chapter,
we will provide a detailed example and discuss the behavior and subtleties of each of these scripts.

Server-side scripts
Let's have a look at the scripts used on the server side.

--setenv and --setenv-safe

The setenv and setenv-safe options are used to set environment variables that can be used by both scripts and plugins. The setenv
option allows us to set almost any environment variables, but this option cannot be "pushed" to clients. The setenv-safe option prepends
each environment variable with the prefix OPENVPN_, avoiding clashes with system environment variables such as PATH and
LD_LIBRARY_PATH. This option can be pushed to clients, allowing for great flexibility.

--script-security

The script-security option determines what types of applications or scripts can be executed from the OpenVPN configuration. There are
four options for the security level:

0: This means no external scripts or programs will be allowed. On a Linux/Unix machine, this causes OpenVPN to not function, as
OpenVPN always needs to run some external commands to set the IP address. On Windows clients, however, you can OpenVPN in this
mode, provided that the default gateway is not altered. For that, an external application needs to be called.
1: This means certain built-in executables are allowed, for example, ip, route, ifconfig, and others. This is the default.
2: This is the most commonly required security level. This allows not only the built-in commands like those listed in the preceding
point, but also user-defined scripts.
3: This allows passwords to be passed to the called scripts via environment variables. This could be unsafe, but is useful for certain

160

authentication scripts or even password change operations.

--up-restart

The up-restart option is simply a flag that can be set. If this flag is set, then both the down and up scripts are called (in that order)
whenever OpenVPN restarts.

--up

The up script is the first script executed after OpenVPN has performed its initial initialization. Normally, this script is run right after OpenVPN
has bound itself to the configured network port and tap TUN or TAP device has been opened. At this point in the startup process, no clients are
connected to the server and authorization has not yet taken place. Some folks use up scripts to initialize proxy servers and/or firewall rulesets.

--route-up

After the TUN or TAP device has been opened, the route-up script is executed to setup any system routes on the server side.

--tls-verify

Whenever a client connects to the server, the first script that will be executed on both client and server is the tls-verify script. This script is
called several times, once for each certificate that the client presents to the server. At this point, the remote peer is still considered untrusted.
This can be used to verify client or server certificate information prior to authentication. If the tls-verify script returns a nonzero exit code
the client connection is rejected.

--auth-user-pass-verify

Beyond relatively simply SSL certificate client authentication, OpenVPN supports a rather robust set of tools for username and password
authentication. This argument takes two arguments, the command, and its method. The method defines how OpenVPN passes the authentication
credentials to the command. The method can be either via-env or via-file. In order to use the via-env option, the script-
security option will need to be set to three (3) to support this. If the auth-user-pass-verify script returns a nonzero exit code, the
client connection is rejected.

It is important to know that the auth-user-pass-verify script is also executed whenever a client has restarted or needs to renegotiate
security parameters with the server. Renegotiation of the security keys normally happens every hour, but can be controlled using the reneg-
sec, reneg-pkts, and reneg-bytes options.

--client-connect

This is executed once a client has been authenticated to the VPN server. Most scripts in the wild generally run here. The client-connect
script is passed a single argument, which is the name of a temporary file. After the script has finished, the file is processed by OpenVPN and all
contents are parsed as extra configuration options. This allows an administrator to add special settings to a particular client, allowing for more
flexibility than a CCD file. One of our examples in this chapter utilizes a client-connect script to update a database used to track and
trend VPN connection statistics.

--learn-address

The learn-address script allows OpenVPN to help define firewall rules and other address-specific options. It is executed whenever a new
client is added, updated, or deleted from OpenVPN's internal address tables. More detailed information is available in the man page. This option
supports both IPv4 and IPv6. The learn-address script is actually called separately for IPv4 and IPv6 addresses, once with the IPv4
address as the primary parameter and once with the IPv6 address.

--client-disconnect

As with the client-connect script in the preceding section, the client-disconnect script is the second most commonly used
scripting juncture. As mentioned previously, in one of the examples in this chapter, a client-disconnect script will be used to update
database records with usage statistics and other information.

--route-pre-down

Once a tunnel shutdown has begun, the route-pre-down script is run. This could be used to automate the shutdown of remote proxy
servers, and to close holes in the firewall that were open/established earlier in an --up script.

--down

Inverse to the up option, the down option runs a command after the TUN/TAP device closes. This option takes a command or script as an
argument, with additional arguments being passed to the script or command. If you need to run a command before the TUN/TAP device closes,
you can use the down-pre option instead.

Note

There is no method to run a script both before and after the TUN/TAP device closes.

Client-side scripts
We will discuss the client-side scripts in this section.

--setenv and --setenv-safe

This is exactly the same as in the preceding Server-side scripts section.

161

--script-security

This is also exactly the same as in the preceding Server-side scripts section.

--up-restart

The up-restart option is simply a flag that can be set. If this flag is set, then both the down and up scripts are called (in that order)
whenever OpenVPN restarts.

--tls-verify

Whenever a client connects to the server, the first script that will be executed on both client and server is the tls-verify script. This script is
called several times, once for each certificate that the server presents to the client. At this point, the remote peer is still considered untrusted.
This can be used to verify client or server certificate information prior to authentication. If the tls-verify script returns a nonzero exit code
the client connection is rejected.

--ipchange

On the client side, the ipchange script is executed after tls-verify as well as any time the remote (also known as trusted) IP address
changes. This can be used to update firewall rules or a proxy server, prior to opening the TUN/TAP adapter.

--up

The up script is the first script that is executed after the client authentication has completed. After the server has successfully authenticated the
client, a set of configuration parameters is sent to the client. These parameters include the VPN IP address to use, as well as any other options
that are pushed to the client. Some folks use up scripts to initialize proxy servers and/or firewall rulesets.

--route-up

Once authenticated and routes have been established, the route-up script is executed. Optionally, this script can be delayed a given number
of seconds with the route-delay option.

--route-pre-down

Once a tunnel shutdown has begun, the route-pre-down script is run. This could be used to close connections to remote proxy servers,
other tunnels (SSH) or correct DNS server entries.

--down

Inverse to the up option, the down option runs a command after the TUN/TAP device closes. This option takes a command or script as an
argument, with additional arguments being passed to the script or command. If you need to run a command before the TUN/TAP device closes,
you can use the down-pre option instead.

Note

There is no method to run a script both before and after the TUN/TAP device closes.

Examples of server scripts
Server scripting can be used to greatly enhance your OpenVPN deployment. Scripts can be used for authentication, authorization, logging, and
more. Coupled with client-config options, scripts can be further utilized to generate on-the-fly client configuration directives. For
example, authentication can happen via LDAP and authorization rules can be dynamic through that same LDAP directory. Firewall rules can be
generated and applied, and the routes can be passed to the client. This section will demonstrate a little of all of these things to aid you in
applying those methods.

The most common server-side scripts are the --client-connect and --client-disconnect scripts. These scripts can be used for
many things, including opening firewall rulesets, mounting file systems, and even building client configuration files on the fly.

Coupled with a task scheduler, other scripts can be run outside the direct context of OpenVPN, but can still act on connected clients via the
OpenVPN management interface. For example, an administrator can provide allotted time to end users and disconnect users after that allotted
time has been exhausted.

Client-connect scripts

Let's now look at the client-connect scripts.

Client authentication

Authentication is the definition of who is able to connect. This does not define what those users can do, simply whether they are allowed to
connect to the VPN or not. At the most basic level, it is entirely possible to allow a user to connect, but not enable that user to actually do
anything. One use for this could be a monitoring script that simply wants to verify your VPN server is running and authenticating users. This
pseudo-user shouldn't have the ability to route traffic, since there's no need.

Many variables and authorities can be examined with authentication scripts including smart cards, LDAP or RADIUS servers, certificate
information, certificate revocation lists, and more. If you've read this book from the beginning, in Chapter 5, Advanced Deployment Scenarios in
tun Mode, you should have built a VPN server configuration that already uses LDAP and other backends. With scripting, you can extend
support for those backends without a current plugin or you can query additional sources.

The most common server-side script is arguably the --client-connect script. This script is executed after all the TLS verification has

162

taken place. In cases where the client-connect script has much to do, this is ideal to prevent a type of Denial of Server (DoS) attack caused by
your own scripting. Before this script is run, the client has been verified as potentially having the proper tls-auth key and a valid certificate.
The client-connect script can be used as a sort of pre-authentication, as it's executed before the --auth-user-pass-verify script.
It can also be utilized to dynamically generate a client config.

When using a script, ensure that you have --script-security set to 2 or 3 (see definitions earlier in this chapter). Failure to present this
option will return an AUTH_FAIL message to clients. As an example, we've created a very simple script that prints the shell environment and
exits with zero (0), indicating success to the OpenVPN daemon. In our server configuration, we've added the following two directives:

script-security 2

client-connect /usr/local/etc/openvpn/cc.sh

Note

There is an environment variable script_type that defines the type of script being called. Using this variable, it's possible to have a single,
monolithic script to handle all OpenVPN scripting calls.

Here's our example client-connect script:

#!/bin/sh

printenv > /tmp/movpn

exit 0

The exit code is important as anything other than a zero (0) will result in the client being disconnected. With the preceding script and
configuration, when there is a new client connection, our script will be executed. This script allows the connection but prints the shell
environment to a temporary file. The contents of this file are interesting and will apply to all other scripts:

daemon_start_time=1425344172

daemon_pid=4004

local_1=SERVER_IP

trusted_ip=CLIENT_IP

redirect_gateway=0

untrusted_port=1194

tun_mtu=1500

X509_0_ST=Enlightenment

X509_0_CN=client1

X509_0_emailAddress=root@example.org

time_ascii=Mon Mar 2 18:56:17 2015

proto_1=udp

X509_1_emailAddress=root@example.org

tls_id_0=C=ZA, ST=Enlightenment, O=Mastering OpenVPN, CN=client1, emailAddress=root@example.org

tls_id_1=C=ZA, ST=Enlightenment, L=Overall, O=Mastering OpenVPN, CN=Mastering OpenVPN,

emailAddress=root@example.org

ifconfig_ipv6_local=2001:db8:100::1

untrusted_ip=CLIENT_IP

daemon=1

tls_serial_hex_0=02

trusted_port=1194

dev_type=tun

tls_serial_hex_1=d2:93:32:f0:8e:bc:58:ee

X509_1_ST=Enlightenment

X509_1_CN=Mastering OpenVPN

script_context=init

tls_serial_0=2

PWD=/usr/local/etc/openvpn

daemon_log_redirect=1

tls_serial_1=15173527578309581038

ifconfig_local=10.200.0.1

dev=tun0

local_port_1=1194

time_unix=1425344177

link_mtu=1541

remote_port_1=1194

X509_0_C=ZA

tls_digest_0=1b:27:a6:b4:5f:7a:9c:3f:17:fb:ff:33:05:61:3f:2a:56:89:16:d3

tls_digest_1=e4:f1:43:37:34:51:de:99:7a:dc:e3:6d:f2:4c:5b:84:34:4b:f3:64

script_type=client-connect

X509_1_C=ZA

ifconfig_broadcast=10.200.0.255

ifconfig_pool_remote_ip=10.200.0.2

ifconfig_ipv6_remote=2001:db8:100::2

ifconfig_ipv6_netbits=64

ifconfig_netmask=255.255.255.0

config=/usr/local/etc/openvpn/openvpn.conf

ifconfig_pool_netmask=255.255.255.0

X509_0_O=Mastering OpenVPN

X509_1_L=Overall

163

verb=4

common_name=client1

X509_1_O=Mastering OpenVPN

Using these environment variables, a savvy OpenVPN administrator can customize the configuration in a seemingly simple server setup.

Client authorization

Authorization can occur in a few places, including the client-config-dir file, or additions can be made via the client-connect
script.

Note

Authentication is proving who you are. Authorization is determining what you are allowed to do.

The first argument passed to the client-connect script will be a path to a temporary file that the script can use to pass configuration
options for the connecting client to the OpenVPN daemon. This script checks the common_name environment variable and if it is client1,
sets disabled in the client configuration:

#!/bin/sh

if ["$common_name" = "client1"];

then

 echo "disable" >> $1

fi

exit 0

When client1 connects, the disable option will be passed to the server, preventing the connection from continuing. Other options can be
passed, such as ifconfig for static IP addresses, pushing different routes, and more.

Example 1—client-selected routes

Consider a network administrator with two data centers, each with their own pair of OpenVPN servers. There was an occasion where it was
necessary to work with one data center while ensuring that if the other was inaccessible, services and systems were still available at the
functioning data center.

To aid in testing this, we created some scripts (client-connect and auth-user-pass-verify) to select which routes were passed to
the client.

The following diagram should provide a rough idea of the concept. The VPN client has three configuration options to choose from, full routes
(full), routes for Data Center 1 (dc1), and routes for Data Center 2 (dc2). Further, the client can connect to either data center and get just the
needed routes for any of those three.

In our scheme, client1 connects to a data center and will be prompted for their username and password. In reality, we're ignoring the
password and reading the username to determine the routes desired.

To capture the route selection, we made use of the auth-user-pass-verify script. OpenVPN takes two arguments, a script path and
either via-file or via-env to determine how to pass the credentials to the script. In this example, we selected via-file.

The script reads the credentials in from the script and rewrites it to a file that will be accessible by the client-connect script:

#!/bin/sh

echo 'head -n1 $1' > \

/tmp/openvpn-${untrusted_ip}-${untrusted_port}.tmp

exit 0

164

Next, our client-connect script is run and it reads the .tmp file created previously. Based on the argument read, it writes the route
selection out to the file passed to client-connect for configuration arguments:

#!/bin/sh

creds="/tmp/openvpn-${untrusted_ip}-${untrusted_port}.tmp"

if [-f "$creds"];

then

 selected='head -n1 $creds'

 if ["$selected" = "dc1"];

 then

 cat >> $1 <<- EOF

 push "route 10.10.0.0 255.255.255.0"

 push "route 10.10.1.0 255.255.255.0"

 EOF

 elif ["$selected" = "dc2"];

then

 cat >> $1 <<- EOF

 push "route 10.20.0.0 255.255.255.0"

 push "route 10.20.1.0 255.255.255.0"

 EOF

else

 cat >> $1 <<- EOF

 push "route 10.10.0.0 255.255.255.0"

 push "route 10.10.1.0 255.255.255.0"

 push "route 10.20.0.0 255.255.255.0"

 push "route 10.20.1.0 255.255.255.0"

 EOF

 fi

fi

exit 0

Although this isn't ideal and it's possible to attack this in many ways, it allowed us to have a single OpenVPN configuration for each of the
system administrators and gave them some level of dynamic routing based on their tasks.

Example 2—track client connection statistics

Using client-connect and client-disconnect scripts, it's possible to write client connection statistics to a database or other place.
For this example, we just want to track when users connect and how much time they spend connected to the VPN server.

We are assuming you are at least familiar with SQL and so will not focus on the semantics. SQLite 3 is used in the following example to store
session information. The schema for our example database is as follows:

CREATE TABLE vpn_session (

 session_id integer primary key autoincrement not null,

 cn test not null,

 connect_time timestamp default CURRENT_TIMESTAMP,

 disconnect_time timestamp default null,

 vpn_ip4 char(15),

 vpn_ip6 char(40),

 remote_ip4 char(40),

 connection_time integer default 0

);

The schema can be loaded into a database with the following command:

ecrist@example:~-> sqlite3 movpn.sqlite3 < file.schema

Tip

The directory and file you use for SQLite needs to be readable and writeable by the OpenVPN user. If you have --user or --group defined
in your configuration file, that user will need this access. Without it, your client-connect and client-disconnect scripts will be
unable to update the database.

This time, we are going to create a script that will be called for both client-connect as well as client-disconnect. We will detect
and handle the script type within the code. For the client-connect type, we are going to insert a new record for the new session. For
client-disconnect, we will update that record to provide further accounting.

The code is as follows:

#!/bin/sh

DBFILE="/var/openvpn/movpn.sqlite3"

DBBUFFER="/var/openvpn/buffer.sql"

db_query (){

 SQL="$1"

 /usr/local/bin/sqlite3 $DBFILE "$SQL"

165

 if [$? -ne 0];

 then

 # There was an error, write the SQL out to a buffer file

 echo "$SQL" | tr -d "\t" | tr -d "\n" | tee -a $DBBUFFER

 echo ";" | tee -a $DBBUFFER

 fi

}

logger "OpenVPN Type: $script_type"

case "$script_type" in

 client-connect)

 # do record insert

 logger "OpenVPN: client-connect"

 SQL="

 INSERT INTO vpn_session (

 cn, connect_time, vpn_ip4,

 vpn_ip6, remote_ip4

) VALUES (

 '$common_name', '$time_unix',

 '$ifconfig_pool_remote_ip',

'$ipconfig_ipv6_remote',

 '$untrusted_ip'

)"

 db_query "$SQL"

 ;;

 client-disconnect)

 # update the record, if it's found

 logger "OpenVPN: client-disconnect"

 SQL="

 UPDATE

 vpn_session

 SET

 disconnect_time = '$time_unix'

 WHERE

 cn = '$common_name'

 AND disconnect_time IS NULL

 AND session_id = (

 SELECT MAX(session_id)

 FROM vpn_session

 WHERE cn = '$common_name'

)

 "

 db_query "$SQL"

 ;;

esac

exit 0

This script makes use of the switch case function to determine what the script type is and behave accordingly. On a new client connection, it
will update a database table with connection information and update that database record when the client disconnects. The schema we used here
is fairly simple and could easily be extended to support tracking bandwidth usage and multiple client connections.

Using the sqlite3 command, we can pull the three most recent database entries:

ecrist@example:/usr/local/etc/openvpn-> sqlite3 /var/openvpn/movpn.sqlite3 "SELECT * FROM

vpn_session ORDER BY session_id DESC LIMIT 3"

10|client1|1426430834||10.200.0.2||CLIENT_IP|

9|client1|1426430759|1426430759|10.200.0.2||CLIENT_IP|0

8|client1|1426429888|1426429888|10.200.0.2||CLIENT_IP|0

Example 3—disconnect user after X minutes

There are a number of ways to handle this scenario. If you provide users a short amount of access, say 30 minutes at a time, a client-
connect script with a simple sleep can accomplish the disconnect and account lockout. Let's say you sell short, one-time VPN sessions of up
to 30 minutes. In this scenario, after the user has reached their 30 minutes of use, a cron job will disconnect the user and lock their account
using the CCD directory entry.

This example is going to build a bit on the previous one, using the SQLite database we created to track time used. Our script will have a few
tasks:

Calculate VPN connection time used
Lock out user after allotted connection time
Disconnect client if currently connected

To accomplish the preceding tasks, we will write a small shell script that will be called by the cron daemon. Here, we will check connection
information by querying the management port and the database we created in the previous example. An alternative to querying the management
port would be to poll the OpenVPN status log file and act on that data in real time. One serious caveat to polling the management interface is

166

that it is single-threaded and will only allow one connection at a time. If a script hangs or someone is connected to the interface, consecutive
polls will also hang. The code is as follows:

#!/bin/sh

#

Determines if user ($1) has been connected more than $2 seconds

if [$# -lt 2];

then

 echo "usage: $0 <user> <time_in_seconds>"

 exit 1

fi

USER=$1

TO=$2

DB seconds

SQL="SELECT SUM(connection_time) FROM vpn_session WHERE cn='$USER'"

DBTIME='/usr/local/bin/sqlite3 /var/openvpn/movpn.sqlite3 "$SQL"'

if ["$DBTIME" = ""];

then

 DBTIME=0

fi

Check management port

CTIME='echo "status 2" | nc -N localhost 1194 | grep -E "CLIENT_LIST.*$USER" | cut -f8 -d,'

if ["$CTIME" != ""];

then

 # we have an active connection

 D='date +"%s"'

 CTIME='expr "$D - $CTIME"'

else

 CTIME=0

fi

UTIME='expr $DBTIME + $CTIME'

if [$UTIME -gt $TO];

then

 logger "Disconnecting $USER, activity time exceeded ($UTIME/$TO)."

 echo "disable" >> /usr/local/etc/openvpn/ccd/$USER

 cho "kill $USER" | nc localhost 1194

fi

Now that we have a script, we can call it:

root@example:~-> timeout.sh client1 1800

This will calculate how many seconds client1 has been connected to the VPN. If the time exceeds 1800 (or whatever number you put
there), it will disable that configuration via the client-config-directory and kill any active sessions using the management interface.

Tip

The OpenVPN management interface only allows a single connection at a time. Make sure your script handles this limitation correctly.

Examples of client scripts

Many third-party OpenVPN client packages make heavy utilization of client-side scripting to provide solid integration with various operating
systems. Tunnelblick, originally written by Angelo Laub, uses client-side scripting to integrate OpenVPN server DNS settings with Mac OS X
operating system.

The "client" moniker for client-side scripting can be a bit of a misnomer. In many cases, the OpenVPN client may, in fact, be another server.
Perhaps you have multiple disparate offices and are using OpenVPN to connect them. The client scripts can be utilized to start a daemon,
backup process, or other services that the local network depends on the OpenVPN session for.

Client scripts are written similarly to server-side scripts and have a nearly identical list of environment variables available to them.

Example 4—mount NFS share

A common client connection task is to mount remote shares once connected to a corporate network. Let's consider a web developer who needs
the web directory automounted once they've connected to the VPN.

The first task is to write the client-side up and down scripts. The up script will connect the network share and the down script will remove the
network share. The up script in this case is pretty straightforward, mounting the webroot folder via NFS from 10.200.0.53. This example is
written for a Mac OS X system, utilizing osascript to provide graphical popups to notify the user when the NFS share has been mounted.
The code is as follows:

#!/bin/sh

167

make webroot in home if it doesn't exist

mkdir -p ~/remote_shares/webroot

if [$? -eq 0];

then

 mount 192.168.19.53:/webroot ~/remote_shares/webroot

 if [$? -eq 0];

 then

 osascript -e 'tell app "System Events" to display dialog

"~/remote_shares/webroot is mounted"'

 else

 osascript -e 'tell app "System Events" to display dialog "Unable to mount

webroot directory."'

 fi

else

 osascript -e 'tell app "System Events" to display dialog "Unable to create remote share

path."'

fi

The following script is fairly simple:

#!/bin/sh

umount -f ~/remote_shares/webroot

Once the scripts are created, the client configuration needs to be updated to allow external scripts by adding the script-security directive,
along with the up directive:

script-security 2

up /path/to/script/up.sh

Tip

Tunnelblick does quite a bit of its own scripting and will override both of the --up and --down script calls. To work around this, follow the
instructions for script naming and location. These instructions can be found at https://tunnelblick.net/cUsingScripts.html.

Example 5—using all scripts at once

In the following example, we will use all scripts on both client and server side at once. While this does not resemble a real-life situation, it does
provide some nice insights into the order in which the scripts are executed and into the arguments and environment variables for each of the
scripts.

We start out with the following server configuration file:

tls-server

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

server-ipv6 FD00::200:0/112

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

dh /etc/openvpn/movpn/dh2048.pem

tls-auth /etc/openvpn/movpn/ta.key 0

persist-key

persist-tun

keepalive 10 60

topology subnet

user nobody

group nobody

daemon

log-append /var/log/openvpn.log

route 10.100.0.0 255.255.0.0

route 192.168.0.0 255.255.255.0

ask-pass /etc/openvpn/mopvn/secret

script-security 3

168

https://tunnelblick.net/cUsingScripts.html

cd /etc/openvpn/movpn

setenv MASTERING_OPENVPN server

push "setenv-safe SPECIAL hack"

up ./movpn-07-01-script.sh

tls-verify ./movpn-07-01-script.sh

auth-user-pass-verify ./movpn-07-01-script.sh via-env

client-connect ./movpn-07-01-script.sh

route-up ./movpn-07-01-script.sh

client-disconnect ./movpn-07-01-script.sh

learn-address ./movpn-07-01-script.sh

route-pre-down ./movpn-07-01-script.sh

down ./movpn-07-01-script.sh

We save it as movpn-07-01-server.conf. Here are some notes about this configuration file:

The routes that are listed in the server configuration are for demonstration purposes only, as we will see later on.
In order to work around a bug in OpenVPN 2.3.7, we added the following line:

ask-pass /etc/openvpn/movpn/secret

In this file, secret (the passphrase to decrypt the server private key) is stored in plaintext.
In this server configuration, we also used the following option to switch to the directory where the script is located:

cd /etc/openvpn/movpn

This makes the server configuration shorter and easier to read.

Note

With the cd option, it would have been possible to specify the ca, cert, key, dh, and tls-auth options using a shorter path, for
example:

ca ./movpn-ca.crt

However, it is recommended to always use absolute pathnames or the --cd option and relative paths for security-related items to avoid
any confusion.

We also set a server-side environment variable MASTERING_OPENVPN with the value of server using the following command:

setenv MASTERING_OPENVPN server

We push a safe environment variable to all clients using the following command:

push "setenv-safe SPECIAL hack"

Inside client-side scripts and plugins, this variable should show up as OPENVPN_SPECIAL.

Next, we create the following script:

#!/bin/bash

exec >> /tmp/movpn-07-01.log 2>&1

date +"%H:%M:%S: START $script_type script ==="

echo "argv = $0 $@"

echo "user = 'id -un'/'id -gn'"

env | sort | sed 's/^/ /'

date +"%H:%M:%S: END $script_type script ==="

We save this as movpn-07-01-script.sh in the directory /etc/openvpn/movpn. Ensure that the script is executable, create an empty
log file, and start openvpn:

chmod 0755 /etc/openvpn/movpn/mopvn-07-01-script.sh

touch /tmp/movpn-07-01.log

chown nobody /tmp/movpn-07-01.log

openvpn --config /etc/openvpn/movpn/movpn-07-01-server.conf

Before we continue, take a look at the /tmp/movpn-07-01.log file. When OpenVPN start up, some scripts have already been executed:

15:46:57: START up script ===

argv = ./movpn-07-01-script.sh tun0 1500 1541 10.200.0.1

 255.255.255.0 init

user = root/root

[...]

15:46:57: END up script ===

15:46:57: START route-up script ===

argv = ./movpn-07-01-script.sh

user = root/root

The up and route-up scripts have been executed. The parameters passed to the up script provide the name of the TUN/TAP device (tun0),
the tun-mtu (1500), and link-mtu (1541) values, the VPN IP address and netmask (10.200.0.1/255.255.255.0), and the type of

169

invocation (possible values are init or restart).

Note that both scripts were executed with "root" privileges. We will go through the log file output of each script momentarily.

On the client side, we set up a similar configuration. First, create the following configuration file:

client

proto udp

remote openvpnserver.example.com

port 1194

dev tun

nobind

remote-cert-tls server

tls-auth /etc/openvpn/movpn/ta.key 1

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/client1.crt

key /etc/openvpn/movpn/client1.key

persist-tun

persist-key

explicit-exit-notify 3

auth-user-pass

script-security 3

cd /etc/openvpn/movpn

setenv MASTERING_OPENVPN client

tls-verify ./movpn-07-01-script.sh

ipchange ./movpn-07-01-script.sh

up ./movpn-07-01-script.sh

up-restart

route-up ./movpn-07-01-script.sh

route-pre-down ./movpn-07-01-script.sh

down ./movpn-07-01-script.sh

Save it as movpn-07-01-client.conf and recreate or copy over the movpn-07-01-script.sh file from the server.

Again, we ensure that the script is executable, create an empty log file, and start openvpn:

chmod 0755 /etc/openvpn/movpn/mopvn-07-01-script.sh

openvpn --config /etc/openvpn/movpn/movpn-07-01-client.conf

OpenVPN 2.3.7 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [MH] [IPv6] built

on Jun 9 2015

library versions: OpenSSL 1.0.1e-fips 11 Feb 2013, LZO 2.08

Enter Auth Username: *****

 ## enter "movpn"

Enter Auth Password: ******

 ## enter "secret"

NOTE: the current --script-security setting may allow this configuration to call user-defined

scripts

Control Channel Authentication: using '/etc/openvpn/movpn/ta.key' as a OpenVPN static key file

UDPv4 link local: [undef]

UDPv4 link remote: [AF_INET]<IP>:1194

WARNING: this configuration may cache passwords in memory -- use the auth-nocache option to

prevent this

[Mastering OpenVPN Server] Peer Connection Initiated with [AF_INET]<IP>:1194

TUN/TAP device tun0 opened

do_ifconfig, tt->ipv6=1, tt->did_ifconfig_ipv6_setup=1

/usr/sbin/ip link set dev tun0 up mtu 1500

/usr/sbin/ip addr add dev tun0 10.200.0.2/24 broadcast 10.200.0.255

/usr/sbin/ip -6 addr add fd00::200:1000/112 dev tun0

./movpn-07-01-script.sh tun0 1500 1541 10.200.0.2 255.255.255.0 init

Initialization Sequence Completed

You can fill in anything you want for Auth username and Auth password, as the server-side script will always return success.

After the connection has come up, we verify that the VPN client and server can reach each other using both ping and ping6.

Next, we restart the VPN connection by sending a special signal to the OpenVPN client:

killall -USR1 openvpn

This will trigger a "soft-reset" of the OpenVPN client. After the connection has come back up, we verify once more that the VPN is fully
functioning. Soft-resets occur in real-life situations mostly when the persist-tun option is used on the client side and an OpenVPN client is
on a mobile network with roaming, or whenever the network between the client and the server is not very stable. In this scenario, the server-side

170

scripts are called with slightly different parameters, as we will see in a moment.

Finally, shut down the VPN connection by terminating the client. We will now go through the script logs on both server and client.

The server-side script log

The server-side script log can easily grow to thousands of lines, but fortunately there is some structure in it. Let's first check the order in which
the scripts are called:

15:46:57: START up script ===

argv = ./movpn-07-01-script.sh tun0 1500 1541 10.200.0.1 255.255.255.0 init

15:46:57: START route-up script ===

argv = ./movpn-07-01-script.sh

15:47:15: START tls-verify script ===

argv = ./movpn-07-01-script.sh 1 C=ZA, ST=Enlightenment,

 L=Overall, O=Mastering OpenVPN, CN=Mastering OpenVPN,

 emailAddress=root@example.org

15:47:15: START tls-verify script ===

argv = ./movpn-07-01-script.sh 0 C=ZA, ST=Enlightenment,

 O=Mastering OpenVPN, CN=client1,

 emailAddress=root@example.org

15:47:15: START user-pass-verify script ===

argv = ./movpn-07-01-script.sh

15:47:15: START client-connect script ===

argv = ./movpn-07-01-script.sh

 /tmp/openvpn_cc_5b1f0d25ac0f71c98c44ec128e5c21d6.tmp

15:47:15: START learn-address script ===

argv = ./movpn-07-01-script.sh add 10.200.0.2 client1

15:47:15: START learn-address script ===

argv = ./movpn-07-01-script.sh add fd00::200:1000 client1

17:37:18: START tls-verify script ===

argv = ./movpn-07-01-script.sh 1 C=ZA, ST=Enlightenment,

 L=Overall, O=Mastering OpenVPN, CN=Mastering OpenVPN,

 emailAddress=root@example.org

17:37:18: START tls-verify script ===

argv = ./movpn-07-01-script.sh 0 C=ZA, ST=Enlightenment,

 O=Mastering OpenVPN, CN=client1,

 emailAddress=root@example.org

17:37:18: START user-pass-verify script ===

argv = ./movpn-07-01-script.sh

17:37:18: START client-disconnect script ===

argv = ./movpn-07-01-script.sh

17:37:18: START client-connect script ===

argv = ./movpn-07-01-script.sh

 /tmp/openvpn_cc_8528c57f838033a03f38ddb72b57ae30.tmp

17:37:18: START learn-address script ===

argv = ./movpn-07-01-script.sh update 10.200.0.2 client1

17:37:18: START learn-address script ===

argv = ./movpn-07-01-script.sh update fd00::200:1000 client1

17:38:50: START client-disconnect script ===

argv = ./movpn-07-01-script.sh

17:38:50: START learn-address script ===

argv = ./movpn-07-01-script.sh delete fd00::200:1000

17:38:50: START learn-address script ===

argv = ./movpn-07-01-script.sh delete 10.200.0.2

17:39:08: START route-pre-down script ===

argv = ./movpn-07-01-script.sh tun0 1500 1541 10.200.0.1 255.255.255.0 init

17:39:09: START down script ===

argv = ./movpn-07-01-script.sh tun0 1500 1541 10.200.0.1 255.255.255.0 init

First the up and route-up scripts are called, as we have seen before.

When the first client connects, the tls-verify script is called twice: first for the CA certificate that was used to sign the client certificate and
then for the client certificate itself.

Next, the auth-user-pass-verify script is executed. When this script returns success (exit code 0) then the client is authenticated and
considered trusted.

The next script is the client-connect script, which is called with a temporary file. This script is often used to set special options for a
particular client, or to log client activity in a database. This script can still influence the IP address which is assigned to the client, by printing
out an option to the temporary file, for example:

echo "ifconfig-push 10.200.0.88 255.255.255.0" > $1

The last script that is called when a client connects is the learn-address script. This script is called twice, once with the IPv4 address and
once with the IPv6 address. This script is actually best suited for updating firewall rules, but most people tend to use client-connect
scripts for this. The learn-address script is needed, especially in a TAP-based setup, in combination with an external DHCP server.

171

Note

In a TAP-based setup, the second parameter to the learn-address script is the MAC address of the client-side TAP adapter. The client
VPN IP address is available as an environment variable.

From the log file, we can see that the OpenVPN client received a soft-restart trigger at 17:37:18. The order of execution of the scripts
may seem odd, but it can be explained:

A new incoming connection is detected. For this, the tls-verify and auth-user-pass-verify scripts are executed to
determine if it is a valid client.
Once it is determined that this is a valid client and this particular client is already connected, the old client instance is first disconnected.
Thus, the client-disconnect script is called.
Next, the client-connect script is called for the new client instance. Note that the new client instance may be coming from a new
remote IP address.
Finally, the learn-address script is called twice with the action set to update, once for the IPv4 address and once for the IPv6
address. If any firewall rules need to be altered, then this would be the best spot to do this.

At 17:38:50, the client was disconnected. Because we specified explicit-exit-notify in the client configuration, the server is
notified of this immediately and the client-disconnect script is executed.

Note that the learn-address scripts are now executed with the action set to delete.

At 17:39:08, the OpenVPN server process itself is stopped, and the route-pre-down and down scripts are called. Note that the same
parameters are passed to this script as to the up script.

Environment variables set in the server-side scripts

Now that we understand the order in which the scripts are called, it is time to take a closer look at the environment variables that are available to
the scripts.

--up

The environment variables available to the up script are as follows:

MASTERING_OPENVPN=server

PWD=/etc/openvpn/movpn

SHLVL=1

_=/bin/env

config=movpn-07-01-server.conf

daemon=1

daemon_log_redirect=1

daemon_pid=8070

daemon_start_time=1437659216

dev=tun0

dev_type=tun

ifconfig_broadcast=10.200.0.255

ifconfig_ipv6_local=fd00::200:1

ifconfig_ipv6_netbits=112

ifconfig_ipv6_remote=fd00::200:2

ifconfig_local=10.200.0.1

ifconfig_netmask=255.255.255.0

link_mtu=1541

local_port_1=1194

proto_1=udp

remote_port_1=1194

route_gateway_1=10.200.0.2

route_gateway_2=10.200.0.2

route_net_gateway=<SERVER-IP>

route_netmask_1=255.255.0.0

route_netmask_2=255.255.255.0

route_network_1=10.100.0.0

route_network_2=192.168.0.0

route_vpn_gateway=10.200.0.2

script_context=init

script_type=up

tun_mtu=1500

verb=1

Most of the parameters passed to the up script are also present as environment variables. The server-side routing information is also already
available here, but it is best to deal with these variables in the route-up script.

--route-up

In the route-up script, the same environment is available as in the preceding code, with one addition:

script_type=route-up

redirect_gateway=0

172

This environment variable is set to 1 if the default gateway also needs to be redirected. All route statements that are listed in the server
configuration file are presented as environment variables as well. For each route, route_network, route_netmask, and
route_gateway are available. Also, note that the OpenVPN keywords net_gateway and vpn_gateway are represented here as
route_net_gateway and route_vpn_gateway.

--tls-verify

The tls-verify script is called with the full certificate name, which is also known as Distinguished Name (DN). Even more certificate
information is available as environment variables:

X509_0_C=ZA

X509_0_CN=client1

X509_0_O=Mastering OpenVPN

X509_0_ST=Enlightenment

X509_0_emailAddress=root@example.org

X509_1_C=ZA

X509_1_CN=Mastering OpenVPN

X509_1_L=Overall

X509_1_O=Mastering OpenVPN

X509_1_ST=Enlightenment

X509_1_emailAddress=root@example.org

script_type=tls-verify

tls_digest_0=1b:27:a6:b4:5f:7a:9c:3f:17:fb:ff:33:05:61:3f:2a:56:89:16:d3

tls_digest_1=e4:f1:43:37:34:51:de:99:7a:dc:e3:6d:f2:4c:5b:84:34:4b:f3:64

tls_id_0=C=ZA, ST=Enlightenment, O=Mastering OpenVPN, CN=client1, emailAddress=root@example.org

tls_id_1=C=ZA, ST=Enlightenment, L=Overall, O=Mastering OpenVPN, CN=Mastering OpenVPN,

emailAddress=root@example.org

tls_serial_0=2

tls_serial_1=15173527578309581038

tls_serial_hex_0=02

tls_serial_hex_1=d2:93:32:f0:8e:bc:58:ee

untrusted_ip=<CLIENT-IP>

untrusted_port=46171

All of these can be used to determine if this particular client certificate is truly trusted. Note that there are two environment variables,
untrusted_ip=<CLIENT-IP> and untrusted_port=46171, which denote the as-of-yet untrusted client address.

--auth-user-pass-verify

The auth-user-pass-verify script has the same environment as the preceding script, with the addition of three new variables:

common_name=client1

username=movpn

password=secret

The common_name is set after successful completion of the tls-verify script. The username and password are passed as environment
variables because we set script-security to 3 and we added the via-env parameter to the auth-user-pass-verify option in the
configuration file.

--client-connect

The most commonly used script, client-connect, has almost the same environment, but the password variable has been removed.
Furthermore, as the authentication process is now complete, there are two new variables, trusted_ip=<CLIENT-IP> and
trusted_port=<port>, with the exact same values as their untrusted counterparts. Note that the untrusted versions are also still available.

--learn-address

The learn-address script has the exact same environment as the client-connect script. It requires a command to execute, and a few
optional arguments:

operation: add, update, or delete
address: The address being learned or unlearned
common name: The client certificate common name to associate with the address

In a TAP-based setup, the second parameter passed to the script is the MAC address of the client-side TAP adapter. The VPN IP address that
was assigned to the client by the server (if so configured) is available in the environment variables ifconfig_pool_remote_ip and
ifconfig_pool_netmask, respectively, as shown here:

ifconfig_pool_remote_ip=10.200.0.2

ifconfig_pool_netmask=255.255.255.0

--client-disconnect

The client-disconnect script has the exact same environment as the client-connect script, but it also returns some accounting
statistics:

bytes_received=7553

bytes_sent=8105

This information is mostly interesting for accounting purposes.

173

--route-pre-down and --down

Finally, the route-pre-down and down scripts are called with the same parameters as the up script. When the route-pre-down
script is called, the system routes are still present. When the down script is called, the system routes will have been removed, provided that
OpenVPN had the privileges to do so. The environment variable signal=sigint provides information on the type of signal that triggered
the shutdown of OpenVPN.

The client-side script log

The client script log has a very similar flow and structure as the server-side log. Again, let's first check the order in which the scripts are called:

15:47:15: START tls-verify script ===

argv = ./movpn-07-01-script.sh 1 C=ZA, ST=Enlightenment,

 L=Overall, O=Mastering OpenVPN, CN=Mastering OpenVPN,

 emailAddress=root@example.org

15:47:15: START tls-verify script ===

argv = ./movpn-07-01-script.sh 0 C=ZA, ST=Enlightenment,

 O=Mastering OpenVPN, CN=Mastering OpenVPN Server,

 emailAddress=root@example.org

15:47:15: START ipchange script ===

argv = ./movpn-07-01-script.sh [AF_INET]<SERVER-IP> [AF_INET]1194

15:47:17: START up script ===

argv = ./movpn-07-01-script.sh tun0 1500 1541 10.200.0.2 255.255.255.0 init

15:47:17: START route-up script ===

argv = ./movpn-07-01-script.sh

17:37:16: START down script ===

argv = ./movpn-07-01-script.sh tun0 1500 1541 10.200.0.2 255.255.255.0 restart

17:37:18: START tls-verify script ===

argv = ./movpn-07-01-script.sh 1 C=ZA, ST=Enlightenment,

 L=Overall, O=Mastering OpenVPN, CN=Mastering OpenVPN,

 emailAddress=root@example.org

17:37:18: START tls-verify script ===

argv = ./movpn-07-01-script.sh 0 C=ZA, ST=Enlightenment,

 O=Mastering OpenVPN, CN=Mastering OpenVPN Server,

 emailAddress=root@example.org

17:37:18: START ipchange script ===

argv = ./movpn-07-01-script.sh [AF_INET]<SERVER-IP> [AF_INET]1194

17:37:20: START up script ===

argv = ./movpn-07-01-script.sh tun0 1500 1541 10.200.0.2 255.255.255.0 restart

17:38:53: START route-pre-down script ===

argv = ./movpn-07-01-script.sh tun0 1500 1541 10.200.0.2 255.255.255.0 init

17:38:53: START down script ===

argv = ./movpn-07-01-script.sh tun0 1500 1541 10.200.0.2 255.255.255.0 init

When the client first connects, the tls-verify script is called twice, first for the CA certificate that was used to sign the server certificate
and then for the server certificate itself. This way, the client can verify that it is connecting to a trusted server.

After that, the little-known ipchange script is called. This script does not yet know which client IP address it will be assigned. It is used
mostly to adjust firewall settings on the client or to notify another application that a VPN connection setup is in progress.

Once the client is authenticated with the server, a block of information is pushed from the server to the client. This block is then parsed locally
as configuration options, after which the up and route-up scripts are called.

When we sent a USR1 signal to the OpenVPN client, it caused OpenVPN to perform a soft-restart. This is seen in the script execution
log as well:

First, the down script is called with the last parameter set to restart instead of init.
Next, the tls-verify and ipchange scripts are called, as we need to reauthenticate ourselves with the server again.
Finally, the up script is called once more to set up the VPN IP address. Here, the last parameter to the script is also set to restart
instead of init.

Note that the route-up script is not called in this case. This is due to the fact that we included persist-tun in the client configuration. As
the TUN/TAP interface was not closed or shut down, all client-side routing is still in effect and hence the route-up script is not executed.

When the client is shutdown the route-pre-down and down scripts are called once more, this time with the parameter set to init.

Environment variables set in the client-side scripts

Now that we understand the order in which the scripts are called, it is again time to take look at the environment variables.

Most environment variables on the client side resemble the ones on the server side. Some variables are mirrored, such as common_name that
contains the common name of the server-side certificate, as can be found in the up and ipchange script environments:

common_name=Mastering OpenVPN Server

Also present in the up script environment is the variable that was pushed from the server to the client:

OPENVPN_SPECIAL=hack

174

The OpenVPN client received the safe variable SPECIAL and created an environment variable for it by prepending OPENVPN_ to it.

Note

There is no method for sending information or variables back from the client to the server. In Version 2.4, some system information will be sent
back, but this cannot be configured on the client.

When the OpenVPN client is restarted using a USR1 signal, the down and up scripts are called with the last parameter set to restart instead
of init. This is also reflected in the environment variables of both scripts:

script_context=restart

script_type=down ## or up

signal=sigusr1

When the OpenVPN is terminated, these environment variables contain the following:

script_context=init

script_type=down

signal=exit-with-notification

175

Plugins
Due to the ease of scripting, the OpenVPN plugin interface is a relatively underutilized tool available to OpenVPN server administrators.
OpenVPN, by default, ships with a pair of plugins, one for PAM authentication and another for executing --down scripts with root privileges,
regardless of whether the administrator de-escalates privileges.

Down-root
It's a good idea to drop privileges within OpenVPN, and the down-root plugin allows you to do that. Applications like firewalls require
escalated privileges to add and remove firewall rules. By utilizing the down-root plugin, an administrator can provide new firewall rules
upon a client connection as well as the ability for the removal of those rules once the client disconnects.

A usage scenario could be a single OpenVPN instance that supports an entire company's staff. Administrative and office staff would not
generally need access to lights-out management interfaces and other such systems on a company network. With the addition of firewall rules,
OpenVPN can introduce allowed access for specific client connections based on CN or other environmental variables. Once that technician
disconnects, removal of the firewall rules prevents another non-technical staff member from gaining that access, even in the event they are on
the same subnet or get the same IP as the formerly connected staff member.

The auth-pam plugin
The second plugin OpenVPN ships with is the auth-pam plugin. This interfaces with the operating system's Pluggable Authentication
Modules (PAM) stack. By using PAM, an administrator is able to leverage any backend that can also interface this way. LDAP is an example
use case for auth-pam.

Many Unix and Linux systems have the ability to authenticate with LDAP. In the case of OpenLDAP, there are a few shared objects such as
PADL Software's pam-ldap and nss-ldap. After configuring these and adding them into the system PAM stack, OpenVPN can be tied in
with a few simple configuration parameters.

Tip

The auth-pam plugin cannot be used on Windows systems due to the lack of support for PAM.

In its simplest form, the following can be added to the server configuration:

plugin openvpn-auth-pam.so login

This enables the plugin and instructs it to utilize the login PAM service. Note that this can be any PAM service, including an OpenVPN specific
setup defined by the administrator. The third parameter in the preceding code identifies the service. A more complicated configuration could
include passed parameters:

plugin openvpn-auth-pam.so login login USERNAME password PASSWORD

In this instance, we're still using the login PAM service, but it requires two parameters: login and password. OpenVPN will potentially pass
three parameters replacing the key words PASSWORD, USERNAME, and COMMONNAME with their obvious counterparts. USERNAME and
PASSWORD require that auth-user-pass should be set in the client configuration.

To determine the queries made by a PAM service or to debug the auth-pam module itself, set OpenVPN logging verbosity to level 7 or
higher. Running auth-pam along with OpenVPN 2.3.6 gives the following output in the log file:

AUTH-PAM: BACKGROUND: received command code: 0

AUTH-PAM: BACKGROUND: USER: ecrist

AUTH-PAM: BACKGROUND: my_conv[0] query='Login:' style=2

AUTH-PAM: BACKGROUND: name match found, query/match-string ['Login:', 'login'] = 'USERNAME'

AUTH-PAM: BACKGROUND: my_conv[0] query='Password:' style=1

AUTH-PAM: BACKGROUND: name match found, query/match-string ['Password:', 'password'] =

'PASSWORD'

Looking at the lines with my_conv, we can see two query values, Login: and Password:. Those successfully partially-match login and
password. To demonstrate the partial match, I've changed the config line as follows:

plugin openvpn-auth-pam.so login log USERNAME password PASSWORD

It is evident in the log here that the module was able to successfully match log to Login: and password to Password:.

AUTH-PAM: BACKGROUND: received command code: 0

AUTH-PAM: BACKGROUND: USER: ecrist

AUTH-PAM: BACKGROUND: my_conv[0] query='Login:' style=2

AUTH-PAM: BACKGROUND: name match found, query/match-string ['Login:', 'log'] = 'USERNAME'

AUTH-PAM: BACKGROUND: my_conv[0] query='Password:' style=1

AUTH-PAM: BACKGROUND: name match found, query/match-string ['Password:', 'password'] =

'PASSWORD'

As helpful as this loose matching is, you need to be careful as there is potential for collisions depending upon the PAM plugin that you're using.

A list of projects that provide assorted authentication plugins, as well as various frontends and certificate managers can be found at
https://community.openvpn.net/openvpn/wiki/RelatedProjects.

176

https://community.openvpn.net/openvpn/wiki/RelatedProjects

177

Summary
Scripting and plugins are powerful tools to extend OpenVPN. It allows an administrator to integrate OpenVPN better into an existing
infrastructure, for example, by enabling authentication against a separate backend system or by recording usage statistics of a client.

Writing OpenVPN scripts can be tricky, as special care needs to be taken about the timing of the scripts. The current version of OpenVPN is
monolithic and single-threaded, which means that a lengthy or misbehaving server-side script can block the entire VPN for all users.

It is also important to understand the flow and order in which the scripts are called. In this chapter, we explored how this order works and which
environment variables are present to each of the server- and client-side scripts.

In the next chapter, we will see more graphical user interfaces, as we dive into the use of OpenVPN on smart phones, tablets, and other mobile
devices.

178

Chapter 8. Using OpenVPN on Mobile Devices and Home
Routers
Nowadays, OpenVPN is available not only on traditional PC-style platforms, but also on smart phones and tablets running Android or Apple
iOS, as well as embedded hardware and home routers. For Android, there are two apps: OpenVPN for Android, which is fully open source, and
OpenVPN Connect for Android, which is the official app from OpenVPN Technologies, Inc. We will cover both these Android apps, as there
are some subtle differences in using them.

In this chapter, we will first explore how to use OpenVPN on Android and iOS, and how to best integrate smart phone use into an existing
OpenVPN setup.

Next, we will explore how OpenVPN can be used on small hardware, such as home routers running the popular DD-WRT Linux-based
firmware. We will show how to use a home router as both an OpenVPN client and an OpenVPN server.

An important note is that both Android and iOS only support tun mode. This is a limitation of the operating system, not of the OpenVPN app
used. Fortunately, most OpenVPN deployments are tun-based, but it will not be possible to build an Ethernet-style VPN or connect to a bridged
setup using either iOS or Android.

The following topics will be covered in this chapter:

Using the OpenVPN for Android app
Using the OpenVPN Connect app for Android
Using the OpenVPN Connect app for iOS
Integrating smart phones into an existing VPN setup
Setting up DD-WRT with OpenVPN support
Using a home router as a VPN client
Using a home router as a VPN server

Using the OpenVPN for an Android app
The OpenVPN for Android app is fully open source and is based on the latest OpenVPN (Git-master) code branch. This means that certain
features are available in this version of OpenVPN that have not yet made it into the regular production version of OpenVPN.

For this example, we installed OpenVPN for Android from Google Play on a Samsung Galaxy Note 10.1 2014 tablet running Android 4.3.

For both OpenVPN for Android and OpenVPN Connect, it is handy to set up a special configuration profile. This profile can then be imported
into the OpenVPN app with one click. This applies to both the Android and iOS versions of the apps, as we will see later in this chapter.

Tip

Note that there are two separate apps, both written by well-known OpenVPN developers. OpenVPN Connect is a product from OpenVPN
Technologies, Inc., written by James Yonan. OpenVPN for Android is written by Arne Schwabe.

Creating an OpenVPN app profile
To create an OpenVPN application profile, we will be following the steps given here:

1. We start out with the basic-udp-client.conf configuration file, and we replace all references to external files (tls-auth, ca,
cert and key) with the keyword [inline]. We then add inline blobs for these files by copying and pasting in the contents of the
ta.key, ca.crt, client1.crt, and client1.key files, respectively.

Note

Inline configs are required for the OpenVPN connect app (even the iOS app) due to a need to keep the config and certificates together.
These apps support multiple OpenVPN configurations, and this prevents the need to name certificate files uniquely.

2. The resulting configuration profile will look like this:

client

proto udp

remote openvpnserver.example.com

port 1194

dev tun

nobind

remote-cert-tls server

tls-auth [inline] 1

ca [inline]

cert [inline]

key [inline]

<ca>

-----BEGIN CERTIFICATE-----

MIIEwTCCA6mgAwIBAgIJANKTMvCOv...

...

-----END CERTIFICATE-----

</ca>

179

<cert>

-----BEGIN CERTIFICATE-----

MIIDeTCCAmECAQQwDQYJKoZIhvcNAQE...

...

-----END CERTIFICATE-----

</cert>

<key>

-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEA3vzLCSqR3fQF...

...

-----END RSA PRIVATE KEY-----

</key>

<tls-auth>

-----BEGIN OpenVPN Static key V1-----

5f5b2bfff373961654089871b40a39eb

...

-----END OpenVPN Static key V1-----

</tls-auth>

3. Save it as basic-udp-inline.ovpn.
4. Make the file available on the Android device, either by transferring or by mailing it.

Note

If you upload the configuration file to a web server, it is very important that the file type and extension remain intact. If the tablet or
phone recognizes the OpenVPN profile as a plain text file, then it will usually automatically treat it as a text file. In some cases, it may
be desirable to store the .ovpn file inside a ZIP file (.zip) to avoid such file type mangling.

5. On the OpenVPN server side, launch the server using the ipv6-udp-server.conf profile.
6. For the remainder of this example, we use the Android device.
7. Download and install the free app from Google Play on the device.
8. Make sure the .ovpn configuration file is available on the device as well.
9. Launch the app for the very first time. An empty list of profiles will appear, as shown here:

10. Click on the folder icon at the bottom of the screen to import the .opvn file. Browse to the location of the .ovpn file, select it, and
click on Import. After a successful import, the log will show:

180

11. Go back to the main OpenVPN app screen. On this screen, you will now see the list of available profiles:

12. On the Android device, click on the profile movpn-android-udp once to start the OpenVPN connection. The OpenVPN for Android
app will now try to establish the connection. If logging is set to verbose, then the main screen will show an OpenVPN log in a very
similar fashion to the desktop OpenVPN client, without timestamps:

13. OpenVPN will connect. After the connection has been successfully established, the Vpn Status in the bottom-left corner will show
Connected.

Note

181

Note from the log file that OpenVPN for Android also supports IPv6 addressing.

14. Next, we verify that the VPN connection is indeed functional.
15. Using an Android Ping app, we ping the VPN server IP address. Start the Ping app and type in the VPN address of the server. As newer

versions of Android no longer support ICMP ping messages, a TCP-based ping with destination port 80 is used in this example. Run a
tiny web server on the VPN server and make sure that incoming TCP traffic on port 80 is allowed before attempting to ping the VPN
server.

16. Of course, you can also use a regular ICMP ping from the server to the client's VPN IP address to ensure that the VPN connection is
functional:

[server]$ ping 10.200.0.2

PING 10.200.0.2 (10.200.0.2) 56(84) bytes of data.

64 bytes from 10.200.0.2: icmp_seq=1 ttl=64 time=14.5 ms

64 bytes from 10.200.0.2: icmp_seq=2 ttl=64 time=13.2 ms

Note

The Android for OpenVPN app can be used on smart phones and tablets based on either an ARM core or an Intel Atom core. The
OpenVPN Connect app, which will be discussed in the next section, is available only for devices based on an ARM chip.

Using the PKCS#12 file
The OpenVPN for Android app can also use an external public certificate/private key pair in the so-called PKCS#12 format.

You can convert an existing public certificate (.crt) and private key (.key) file to a PKCS#12 (.p12) file using the following commands:

$ openssl pkcs12 -export -out client1.p12 \

 -in client1.crt -inkey client1.key -CAfile movpn-ca.crt

Enter Export Password:

Verifying - Enter Export Password:

Ensure that you include the CA certificate file as well; otherwise, the ca file must be included in client configuration.

The corresponding client configuration profile is given as follows:

client

proto udp

remote openvpnserver.example.com

port 1194

dev tun

182

nobind

remote-cert-tls server

tls-auth [inline] 1

pkcs12 client1.p12

<tls-auth>

-----BEGIN OpenVPN Static key V1-----

5f5b2bfff373961654089871b40a39eb

...

-----END OpenVPN Static key V1-----

</tls-auth>

The advantage of this method is that the OpenVPN configuration is stored separately from the client authentication files. The downside is that
this method does not work with the OpenVPN Connect app.

183

Using the OpenVPN Connect app for Android
The OpenVPN Connect app is the official app from OpenVPN Technologies, Inc. I downloaded and installed the free app from Google Play on
the same Samsung Galaxy Note 10.1 2014 tablet as in the previous example.

The OpenVPN Connect app can only be used with profiles that use [inline] certificate and key pairs. For this, we use the OpenVPN
configuration profile created in the previous example by using the following steps:

1. On the VPN server side, we launch OpenVPN using the standard ipv6-udp-server.conf configuration file.
2. After download and installation, launch the app and import the profile:

3. Next, select the right profile and click on Connect:

184

4. After the OpenVPN connection has been established, the client will report OpenVPN: Connected.

Note

Note that the OpenVPN Connect client for Android also supports IPv6 addressing, as can be seen in the preceding screenshot.

5. Verifying that the VPN client can be reached from the server and vice versa is left as an exercise to the reader.

185

Using the OpenVPN Connect app for iOS
For this example, I installed OpenVPN Connect app from Apple's App store on an Apple iPad running iOS 8.1.2, as well as on an iPhone
running iOS 8.

Note

This version of OpenVPN is not open source. A special agreement with Apple was required to gain insight into the Apple iOS networking stack,
in order to be able to port OpenVPN to iOS. This negates the need for a jail-broken device.

Similar to the Android version, the OpenVPN Connect app can be best used with profiles that use [inline] certificate and key pairs.
Therefore, we again make use of the OpenVPN configuration profile created in the first example of this chapter.

On the VPN server side, we launch OpenVPN using the standard ipv6-udp-server.conf configuration file.

Before we can use the OpenVPN profile on iOS, we must transfer it to the device. This can be done via e-mail, or using iTunes. It is a good idea
to ensure you're using a secure transfer method. The iTunes connection is secure, but TLS-encrypted e-mail or another transfer method such as
Dropbox or Google Drive may also be used.

Here is an example given for OpenVPN in the following steps:

1. After transferring the .ovpn profile, launch the OpenVPN app and scroll down to the File Sharing section. Click on OpenVPN and
you will see the following screen:

2. Click on the Add… button to add a new profile. You can also use drag and drop, an OpenVPN configuration (inline mode file, usually
with extension .ovpn) from a folder or desktop into this window.

3. Select the imported profile and click on Add again:

186

4. The client.ovpn file is now available as an OpenVPN Connect profile:

5. When we start the OpenVPN Connect app on a clean iPhone or iPad, we will see the following interface:

187

6. After the profile has been imported, an extra section that lists all available profiles becomes available on the screen. The OpenVPN
Connect user interface can be a bit tricky at first. For example, when a faulty configuration is imported, the following screen is
displayed:

7. The app reports that a profile is available for import, but we can see warning messages stating that there is an error loading this profile.
The only available option is to remove the profile by tapping the red X mark. When a proper configuration file is imported, the green +
button is also available. This is shown in the following screenshot:

188

8. Click on the + icon to open the OpenVPN connection profile:

9. Finally, use the slider behind the Connection entry to start the OpenVPN connection.
10. After the VPN connection has been successfully established, we can see that both IPv4 and IPv6 are supported in the OpenVPN Connect

app:

11. You can use the Connection slider button again to stop the VPN connection.

189

Integrating smart phones into an existing VPN setup
OpenVPN on smart phones can only be used as a VPN client, which is the normal usage mode of smart phone anyways. For Android, multiple
OpenVPN client apps exist. There are some subtle differences between the different apps, but all of them support only tun-mode setups, as the
underlying OS does not support tap devices.

The question of which app to use on Android devices is a difficult one. If you are using a mix of iOS and Android devices then the OpenVPN
Connect app is an easier choice, as the user interface is more consistent across the devices. If you use the commercial OpenVPN Access Server,
OpenVPN Connect is the only route due to dynamic configuration and some server option differences. If you need some of the special features
of the OpenVPN for Android app or if you want to use OpenVPN on non-ARM based phones or tablets, then OpenVPN for Android is the
logical choice.

As can be seen from the previous example, some changes are required to use the "app" versions of OpenVPN. Note that we did not make any
changes on the server side to support Android or iOS devices, but the server setup used was relatively straightforward. As we saw in the
previous examples, the "app" versions support both IPv4 and IPv6, as well as most of the other features of the desktop OpenVPN software.
However, especially when routing or file sharing is involved, it can become tricky to generate a single server-side setup to support all platforms.
It is also not possible to run client-side scripts, should they be required to set up the VPN connection. It is, of course, possible to use password-
protected key files.

If exceptions need to be made for the installed "app" versions, then it is advisable to set up a separate OpenVPN server to serve. So set up a new
static IP address and connect.

In the DD-WRT interface, upgrade the firmware again by selecting the "big" version and click on Upgrade once more. The upgrade process
will again take a few minutes, but afterwards the DD-WRT interface should be available again.

Your router is now ready to be configured as either an OpenVPN client or an OpenVPN server.

190

Using a home router as a VPN client
You can use the following procedure to configure a DD-WRT router as an OpenVPN client:

1. In the DD-WRT web interface, click on the Services tab and then click on VPN.
2. Click on the Enable radio button next to Start OpenVPN Client.
3. Fill in the connection details and enable Advanced Options, as shown in the following screenshot:

Most settings can be left at their default values, but disable Firewall Protection to ensure that the VPN server can reach the client and vice
versa, by using the following steps:

1. This is a long web form, so scroll down and fill in the security parameters:
TLS auth key
CA certificate
Client public certificate
Client private key

2. The values for these fields are the exact same values as used in the configuration profile for the Android client at the beginning of this
chapter:

191

3. After filling in all the security parameters, click on Save to save the OpenVPN client configuration. Normally, as soon as a valid profile
has been entered, the DD-WRT OpenVPN client will attempt to make a connection with the server. Note that you can normally have
only a single profile stored on the DD-WRT device, due to size limitations of the device's NVRAM storage space.

4. After the VPN connection has been established, we can verify that the VPN client can be reached from the server by pinging its VPN IP
address:

$ ping -c 2 10.200.0.2

PING 10.200.0.2 (10.200.0.2) 56(84) bytes of data.

64 bytes from 10.200.0.2: icmp_seq=1 ttl=64 time=0.591 ms

64 bytes from 10.200.0.2: icmp_seq=2 ttl=64 time=0.659 ms

--- 10.200.0.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1000ms

rtt min/avg/max/mdev = 0.591/0.625/0.659/0.034 ms

The easiest method to troubleshoot any connection problems is by looking at the server side logs; the client-side log can be retrieved using the
DD-WRT web interface, but as we will see in the next chapter, the server-side log is usually more informative.

192

Using a home router as a VPN server
Using OpenVPN on a small wireless router is possible, but it greatly depends on the exact type of the wireless router used. On the DD-WRT
and OpenWRT websites, many supported wireless routers are listed, but even most of those have drawbacks. A minimum flash size of 8 MB is
required and a sufficiently large NVRAM space is also desirable.

However, even with the right hardware, the performance of OpenVPN on a wireless router will not be very good due to the limited computing
power of such devices. For people who want to set up a VPN to their home address, performance is usually fine, unless your home connection is
capable of doing more than 100 Mbps upstream.

The following procedure can be used to configure a DD-WRT router as an OpenVPN server:

1. In the DD-WRT web interface, click on the Services tab and click on VPN.
2. Disable the OpenVPN client first by scrolling down and selecting Disable in the OpenVPN Client section.
3. In the OpenVPN Server/Daemon section, enable OpenVPN.
4. Fill in the connection details and compare the details to the lines found in the basic-udp-server.conf configuration file:

1. Select System as Start Type so that the OpenVPN daemon is launched whenever the DD-WRT router boots.
2. It is not entirely clear what the exact difference is between Configure as server and Configure as daemon.
3. Select Router (TUN) as the Server Mode, as we want a tun-style OpenVPN setup.
4. Fill in 10.200.0.0 and 255.255.255.0 as Network and Netmask. This is the equivalent of the "server" line.
5. Port, Tunnel Protocol, Encryption Cipher, and Hash Algorithm can be left at their default values.
6. Click on Enable next to Advanced Options to show all available OpenVPN configuration options. We do not need to change

any of these options, but it is instructive to see which options are available:

5. Next, we fill in the certificate and public/private key details. For this, we make use of the files from the standard server configuration
file basic-udp-server.conf.

6. Scroll down in the lengthy web form and paste the contents of the server.crt, ca.crt, server.key and dh2048.pem files,
respectively:

Public Server Cert: corresponds to the "cert" line (server.crt)
CA Cert: corresponds to the "ca" line (movpn-ca.crt)
Private Server Key: corresponds to the "key" line (server.key)
DH PEM: corresponds to the "dh" line (dh2048.pem)

This terms is shown in the following screenshot:

193

7. Notice that we skipped the TLS Auth Key field. If this field is also filled in, then the NVRAM of the DD-WRT device is exhausted and
the router will need to be reset. As a result, we will not be able to use the basic-udp-client.ovpn client configuration file to
connect to this server.

8. Scroll to the bottom of the screen and click on the Save button. As soon as the configuration has been stored in NVRAM, the OpenVPN
server process will be started.

Note

Storing all configurations in NVRAM is tricky. Using files might be an alternative choice, but this requires a custom startup script.

If the configuration does not fit into NVRAM, it will most likely crash the DD-WRT device and you will need to manually reset it. The
Belkin Playmax router is one example: it was only possible to store the entire configuration in NVRAM by omitting the tls-auth key
file.

9. Finally, connect a client using the movpn-04-01-client.conf configuration file and verify that the VPN connection is working:

[client]$ ping -c 4 10.200.0.1

PING 10.200.0.1 (10.200.0.1) 56(84) bytes of data.

64 bytes from 10.200.0.1: icmp_seq=1 ttl=64 time=22.3 ms

64 bytes from 10.200.0.1: icmp_seq=2 ttl=64 time=18.6 ms

64 bytes from 10.200.0.1: icmp_seq=4 ttl=64 time=21.9 ms

64 bytes from 10.200.0.1: icmp_seq=5 ttl=64 time=15.7 ms

194

Summary
OpenVPN is now available on many platforms, including smart phones, tablets, and even certain models of (wireless) routers. The
configuration, support, and deployment methods vary across these devices, and those differences should be considered when choosing
supported platforms in your environment.

In the next chapter, we will focus on troubleshooting OpenVPN configuration and performance. As both the configuration and the performance
of OpenVPN on smart phones as well as wireless routers can be cumbersome, it will be very useful to learn about troubleshooting techniques.

195

Chapter 9. Troubleshooting and Tuning
Usually, it is quite easy to set up a VPN using OpenVPN. This is one of the most attractive features of OpenVPN compared to other VPN
solutions. However, sometimes it is necessary to troubleshoot a non-working setup or to tune an existing setup to gain performance.

Troubleshooting and tuning OpenVPN are often overlooked topics. The OpenVPN log files on both client and server side provide a lot of
information, but you have to know how to read them. There are also quite a few common mistakes to make when setting up the client and server
configuration files. In this chapter, you will learn how to interpret the OpenVPN log files and how to detect and fix some of these common
mistakes.

Finally, there is a large difference between a working setup and a setup that works well. Your OpenVPN setup may be functioning correctly, yet
users may still complain about poor performance. Getting the maximum performance out of an OpenVPN setup can seem like black magic. In
this chapter, you will learn some of this black magic.

The following topics will be covered in this chapter:

How to read the log files
Fixing common configuration mistakes
Troubleshooting routing issues
How to optimize performance using ping and iperf
Analyzing OpenVPN traffic using tcpdump

How to read the log files
Debugging a non-working setup can seem like a daunting task at first. Where should you begin? Luckily, OpenVPN provides excellent logging
and debugging facilities. However, with increased logging verbosity, it also becomes increasingly difficult to read these log files. The default
log level of OpenVPN is 1, but it is recommended that you set the verbosity to 3. This often gives the administrator enough information to
detect setup issues, while keeping the performance penalty to a minimum.

Setting the verbosity to 5 or higher is recommended only for debugging purposes, as it will severely affect performance.

Every example in this book so far has included the setting verb 3. First, we will go through both client and server log files for a working setup
with this verbosity. It is important to understand, and possibly even store, the log files of a working connection. When trying to find a bug in a
non-working setup, it is very useful to compare the log files of the non-working case with those of the working setup.

Start the server using the default configuration file basic-udp-server.conf:

[root@server]# openvpn --config basic-udp-server.conf

Do not connect to the client yet. The server log file will now contain the following:

 1 14:53:27 OpenVPN 2.3.6 x86_64-redhat-linux-gnu

 [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [MH] [IPv6]

 built on Dec 2 2014

 2 14:53:27 library versions: OpenSSL 1.0.1e-fips 11 Feb 2013,

 LZO2.03

 3 14:53:27 Diffie-Hellman initialized with 2048 bit key

 4 14:53:31 WARNING: this configuration may cache passwords in

 memory -- use the auth-nocache option to prevent this

 5 14:53:31 Control Channel Authentication: using

 '/etc/openvpn/movpn/ta.key' as a OpenVPN static key

 file

 6 14:53:31 Outgoing Control Channel Authentication: Using 160

 bit message hash 'SHA1' for HMAC authentication

 7 14:53:31 Incoming Control Channel Authentication: Using 160

 bit message hash 'SHA1' for HMAC authentication

 8 14:53:31 Socket Buffers: R=[16777216->131072]

 S=[16777216->131072]

 9 14:53:31 TUN/TAP device tun0 opened

10 14:53:31 TUN/TAP TX queue length set to 100

11 14:53:31 do_ifconfig, tt->ipv6=0, tt-did_ifconfig_ipv6_setup=0

12 14:53:31 /sbin/ip link set dev tun0 up mtu 1500

13 14:53:31 /sbin/ip addr add dev tun0 10.200.0.1/24

 broadcast 10.200.0.255

14 14:53:31 GID set to nobody

15 14:53:31 UID set to nobody

16 14:53:31 UDPv4 link local (bound): [undef]

17 14:53:31 UDPv4 link remote: [undef]

18 14:53:31 MULTI: multi_init called, r=256 v=256

19 14:53:31 IFCONFIG POOL: base=10.200.0.2 size=252, ipv6=0

20 14:53:31 Initialization Sequence Completed

The timestamps at the front of each line have been abbreviated for the sake of clarity.

Let's go through this log file line by line:

Lines 1 and 2 indicate the version and build date of OpenVPN itself, as well as the libraries that OpenVPN depends on.

196

Line 3 tells us that the server Diffie-Hellman parameters were initialized successfully. The file specified in the server configuration line
dh /etc/openvpn/movpn/dh2048.pem was used for this.
Line 4 is a warning that is almost always printed. There has been discussion among the developers whether this line should be removed
or not. In the end, it was decided that, for security reasons, it is best to print out this warning. Unless you are extremely paranoid about
security, you can ignore this warning line.
Line 5 indicates that the control channel is protected using the tls-auth configuration option, and that OpenVPN was able to
successfully read the specified file.
Lines 6 and 7 tell us that two SHA1 keys are derived from the tls-auth file, and are now used to sign (hash) the outgoing traffic and
to check the incoming traffic.
Line 8 shows the size of the Receive (R) and Send (S) buffers that OpenVPN uses. These parameters are useful only when
tuning a working setup, as we will see later in this chapter.
Lines 9 and 10 show that OpenVPN was able to successfully open a tun device and was able to set the packet queue depth for this
device to 100.
Line 11 to line 13 shows the IPv4 settings that are used for this server configuration. They also list that no IPv6 settings were specified.
The settings listed here are a translation of the server configuration line server 10.200.0.0 255.255.255.0.
Lines 14 and 15 are the result of specifying group nobody and user nobody in the server configuration file, respectively.
Lines 16 and 17 show that OpenVPN is listening for UDP traffic and is bound to an undefined interface (0.0.0.0). This is the result of
specifying proto udp and bind in the server configuration file.
Line 18 tells us that this is a multi-client setup with real and virtual address table hash sizes of 256.
Line 19 lists the range of pool addresses available to OpenVPN clients that can connect to this server. It is also part of the translation of
the server configuration line server 10.200.0.0 255.255.255.0.
Line 20 is the magical line that tells us that the server started up successfully and that the initialization has completed. The server is now
ready to accept connections from incoming clients.

Next, we launch the client and watch the server-side log file:

[root@client]# openvpn --config basic-udp-client.conf

After that, we will go through the client-side log file as well:

21 15:30:37 <CLIENT-IP>:39086 TLS: Initial packet from

 [AF_INET]<CLIENT-IP>:39086, sid=071ba589 7e9ff2a0

22 15:30:37 <CLIENT-IP>:39086 VERIFY OK: depth=1, C=ZA,

 ST=Enlightenment, L=Overall, O=Mastering OpenVPN,

 CN=Mastering OpenVPN, emailAddress=root@example.org

23 15:30:37 <CLIENT-IP>:39086 VERIFY OK: depth=0, C=ZA,

 ST=Enlightenment, O=Mastering OpenVPN, CN=client3,

 emailAddress=root@example.org

24 15:30:37 <CLIENT-IP>:39086 Data Channel Encrypt: Cipher

 'BF-CBC' initialized with 128 bit key

25 15:30:37 <CLIENT-IP>:39086 Data Channel Encrypt: Using 160 bit

 message hash 'SHA1' for HMAC authentication

26 15:30:37 <CLIENT-IP>:39086 Data Channel Decrypt: Cipher

 'BF-CBC' initialized with 128 bit key

27 15:30:37 <CLIENT-IP>:39086 Data Channel Decrypt: Using 160 bit

 message hash 'SHA1' for HMAC authentication

28 15:30:37 <CLIENT-IP>:39086 Control Channel: TLSv1, cipher

 TLSv1/SSLv3 DHE-RSA-AES256-SHA, 2048 bit RSA

29 15:30:37 <CLIENT-IP>:39086 [client3] Peer Connection Initiated

 with [AF_INET]<CLIENT-IP>:39086

30 15:30:37 client3/<CLIENT-IP>:39086 MULTI_sva: pool returned

 IPv4=10.200.0.2, IPv6=(Not enabled)

31 15:30:37 client3/<CLIENT-IP>:39086 MULTI: Learn: 10.200.0.2 →

 client3/<CLIENT-IP>:39086

32 15:30:37 client3/<CLIENT-IP>:39086 MULTI: primary virtual IP

 for client3/<CLIENT-IP>:39086: 10.200.0.2

33 15:30:39 client3/<CLIENT-IP>:39086 PUSH: Received control

 message: 'PUSH_REQUEST'

34 15:30:39 client3/<CLIENT-IP>:39086 send_push_reply():

 safe_cap=940

35 15:30:39 client3/<CLIENT-IP>:39086 SENT CONTROL [client3]:

 'PUSH_REPLY,route-gateway 10.200.0.1,topology subnet,

 ping 10,ping-restart 60,

 ifconfig 10.200.0.2 255.255.255.0' (status=1)

Let's go through the new log entries:

Line 21 indicates that an initial packet was received from the client with the IP address <CLIENT-IP>. Normally, a full IPv4 address
is listed here.
Lines 22 and 23 show the verification process of the certificate provided by the OpenVPN client. The important part in these log lines is
VERIFY-OK.
Lines 24 to 27 list the encryption and decryption cipher used, as well as the SHA1 hashes used to hash incoming and outgoing traffic on
the data channel. BF-CBC (Blowfish Cipher Block Chaining) is the current default cipher for OpenVPN.
Line 28 shows the TLS cipher used to protect the OpenVPN control channel. The cipher listed here is very similar to the encryption
cipher used by a secure web server.
Line 29 indicates that the client client3 from the IP address <CLIENT-IP> successfully passed the authentication process.
Lines 30 to 32 list the pool address that will be assigned to this client.

197

Lines 33 to 34 show that the client asked for configuration information (PUSH REQUEST), and the reply from the server that it will
send a push_reply.
Line 35 shows the contents of the push_reply message with all the configuration information for this client. This line is extremely
useful when debugging an OpenVPN setup, as it shows most of the information that an OpenVPN server has for a particular client,
regardless of the configuration file used.

Similarly, here's the client log file (note the timestamps and match them against the timestamps from the server log file):

 1 15:30:37 OpenVPN 2.3.6 x86_64-redhat-linux-gnu

 [SSL (OpenSSL)] [LZO] [EPOLL] [PKCS11] [MH] [IPv6]

 built on Dec 2 2014

 2 15:30:37 library versions: OpenSSL 1.0.1e-fips 11 Feb 2013,

 LZO 2.03

 3 15:30:37 Control Channel Authentication: using

 '/etc/openvpn/movpn/ta.key' as a OpenVPN static key

 file

 4 15:30:37 UDPv4 link local: [undef]

 5 15:30:37 UDPv4 link remote: [AF_INET]<SERVER-IP>:1194

 6 15:30:37 [Mastering OpenVPN Server] Peer Connection Initiated

 with [AF_INET]<SERVER-IP>:1194

 7 15:30:39 TUN/TAP device tun0 opened

 8 15:30:39 do_ifconfig, tt->ipv6=0, tt-did_ifconfig_ipv6_setup=0

 9 15:30:39 /sbin/ip link set dev tun0 up mtu 1500

10 15:30:39 /sbin/ip addr add dev tun0 10.200.0.2/24

 broadcast 10.200.0.255

11 15:30:39 Initialization Sequence Completed

Let's go through the new log entries:

Lines 1 and 2 are very similar to the lines from the server log.
Line 3 indicates that the control channel is protected by using the tls-auth configuration option, and that OpenVPN was able to
successfully read the specified file.
Lines 4 and 5 tell us that the client did not bind to a local IP address, and that a UDP connection was established with the server at the IP
address <SERVER-IP> and port 1194.
Line 6 lists that the connection with the OpenVPN server that identifies itself as Mastering OpenVPN Server was established
successfully. The name of the server is retrieved from the common name of the server-side certificate.
Line 7 tells us that OpenVPN was able to open the TUN device tun0.
Lines 8 to10 list the IPv4 information that the server pushed towards this client, and it shows that the IP address and netmask are set
using the standard Linux /sbin/ip command.
Line 11 is again the magical line that tells us that the VPN connection was established successfully, and that we can now securely
communicate with the OpenVPN server. However, as we will see later on, the error messages may have yet to occur.

Detecting a non-working setup
An OpenVPN setup can fail for many reasons. In the next section, we will go through a list of common failures. First, let's take a look at what is
shown in the log files when a connection attempt fails. Failures can occur very early in the connection attempt, or even after the
Initialization Sequence Completed line.

If we use the wrong tls-auth file, the connection will fail very early on. This is exactly the reason to use a tls-auth file, as it will
minimize the load on our OpenVPN server when rogue clients attempt access. A client that attempts to connect without specifying a tls-
auth file will show up in the server logs as follows:

16:40:31 Authenticate/Decrypt packet error:

 packet HMAC authentication failed

16:40:31 TLS Error: incoming packet authentication failed from

 [AF_INET]<CLIENT-IP>:49956

16:40:33 Authenticate/Decrypt packet error:

 packet HMAC authentication failed

16:40:33 TLS Error: incoming packet authentication failed from

 [AF_INET]<CLIENT-IP>:49956

16:40:37 Authenticate/Decrypt packet error:

 packet HMAC authentication failed

16:40:37 TLS Error: incoming packet authentication failed from

 [AF_INET]<CLIENT-IP>:49956

16:40:45 Authenticate/Decrypt packet error:

 packet HMAC authentication failed

16:40:45 TLS Error: incoming packet authentication failed from

 [AF_INET]<CLIENT-IP>:49956

16:41:01 Authenticate/Decrypt packet error:

 packet HMAC authentication failed

16:41:01 TLS Error: incoming packet authentication failed from

 [AF_INET]<CLIENT-IP>:49956

Nothing else is reported about this client, as the OpenVPN server rejects the connection attempt immediately. From the timestamps in the log
file, we can see that the client is increasing the delay time between connection attempts with every failed connection. If no connection can be
made in 60 seconds, then the client will abort:

TLS Error: TLS key negotiation failed to occur within 60 seconds (check your network

198

connectivity)

TLS Error: TLS handshake failed

The second connection failure will only become apparent after the connection seems to have been successfully initialized. For this, we specify
the use of a different encryption cipher on one side, but forget to do so on the other. The client log file will now show the following:

16:56:20 /sbin/ip link set dev tun0 up mtu 1500

16:56:20 /sbin/ip addr add dev tun0 10.200.0.2/24 broadcast 10.200.0.255

16:56:20 Initialization Sequence Completed

16:56:30 Authenticate/Decrypt packet error: cipher final failed

16:56:40 Authenticate/Decrypt packet error: cipher final failed

Thus, at first the connection seems to have been established successfully (lines 1 to 3), but after 10 seconds, data channel encryption and
decryption is failing.

Note

If the Windows GUI had been used in this case, the GUI icon would have turned green but the VPN itself would not be functional!

Most configuration issues will be reported at either the server or the client end during initialization. Routing issues, which are much more
common, will usually not be reported by OpenVPN. Hence, different troubleshooting techniques are required.

199

Fixing common configuration mistakes
When setting up an OpenVPN configuration, there are a few common mistakes that are easily made. These configuration mistakes can be
roughly divided up into four categories:

Certificate (PKI) errors and mismatches
Option mismatches, such as tun versus tap, ciphers, and compression
Insufficient privileges to run OpenVPN
Routing mistakes

In this section, we will go through the first three of these categories. Routing mistakes will be discussed later in this chapter.

Wrong CA certificate in the client configuration
The client configuration file will almost always contain three lines like this:

ca ca.crt

cert client.crt

key client.key

These certificate and private key files were created in Chapter 3, PKIs and Certificates, and are used extensively in subsequent chapters.

The CA file, however, does not need to specify the certificate authority that was used to sign the client certificate file. It must be the public
certificate of the certificate authority that was used to sign the server certificate. If the server certificate was signed by a different CA, then the
client will refuse to connect to the server. This can be seen in the client-side log file:

UDPv4 link remote: [AF_INET]<SERVER-IP>:1194

VERIFY ERROR: depth=1, error=self signed certificate in certificate chain: C=ZA,

ST=Enlightenment, L=Overall, O=Mastering OpenVPN, CN=Mastering OpenVPN,

emailAddress=root@example.org

TLS_ERROR: BIO read tls_read_plaintext error: error:14090086:SSL

routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

TLS Error: TLS object -> incoming plaintext read error

TLS Error: TLS handshake failed

In this case, no errors are logged on the server side, as the client certificate is considered valid by the server.

The only thing logged on the server is as follows:

<CLIENT-IP>:42472 TLS: Initial packet from

 [AF_INET]<CLIENT-IP>:42472, sid=9a1e4a84 cdbb6926

<CLIENT-IP>:51441 TLS: Initial packet from

 [AF_INET]<CLIENT-IP>:51441, sid=17d3c89b 6999ae97

<CLIENT-IP>:43513 TLS: Initial packet from

 [AF_INET]<CLIENT-IP>:43513, sid=4609202f 4c91c23d

This shows the successive connection attempts that are made by the OpenVPN client.

How to fix

Ensure that the right CA file is specified in the client configuration file.

Client certificate not recognized by the server
If the client certificate is not recognized by the server, the server will refuse access to it. This can happen if either the wrong (or a rogue) client
certificate is used, or if the client's certificate was revoked and the crl-verify option is specified in the server configuration file.

The following entries will show up in the server's log file if an unknown client attempts to connect to the OpenVPN server:

<CLIENT-IP>:57072 TLS: Initial packet from

 [AF_INET]<CLIENT-IP>:57072, sid=a175f1be 6faed111

<CLIENT-IP>:57072 VERIFY ERROR: depth=0, error=unable to get

 local issuer certificate: C=NL, O=Cookbook, CN=client1,

 name=Cookbook Client, emailAddress=janjust@nikhef.nl

<CLIENT-IP>:57072 TLS_ERROR: BIO read tls_read_plaintext error:

 error:140890B2:SSL routines:SSL3_GET_CLIENT_CERTIFICATE:

 no certificate returned

<CLIENT-IP>:57072 TLS Error: TLS object -> incoming plaintext

 read error

<CLIENT-IP>:57072 TLS Error: TLS handshake failed

The server cannot verify the client's certificate, as it does not recognize the CA certificate that was used to sign it. It therefore refuses to allow
this client to connect.

On the client side, no messages are printed in the log file for 60 seconds, after which the initial handshake times out and a new connection
attempt is made:

13:24:23 UDPv4 link local: [undef]

200

13:24:23 UDPv4 link remote: [AF_INET]<SERVER-IP>:1194

13:25:23 TLS Error:

TLS key negotiation failed to occur within

 60 seconds (check your network connectivity)

13:25:23 TLS Error: TLS handshake failed

13:25:23 SIGUSR1[soft,tls-error] received, process restarting

13:25:25 Control Channel Authentication: using

 '/etc/openvpn/movpn/ta.key' as a OpenVPN static key file

13:25:25 UDPv4 link local: [undef]

13:25:25 UDPv4 link remote: [AF_INET]<SERVER-IP>:1194

How to fix

Ensure that the client's certificate is recognized by the server. This can be done either by specifying the proper CA certificate in the server
configuration file, or by adding the CA certificate to a stacked CA certificate file in the server configuration file:

cat CA1.crt CA2.crt > /etc/openvpn/movpn/ca-stack.pem

Next, use the following in the server configuration:

ca /etc/openvpn/movpn/ca-stack.pem.

This way, client-side certificates that are signed by either CA1.crt or CA2.crt will be accepted by the server.

Of course, if this is a rogue client that is attempting to connect, then a more appropriate solution might be to blacklist the IP address from which
the client is connecting.

Client certificate and private key mismatch
If the certificate and private key on the client do not match, then OpenVPN will not even attempt to connect to the server. The following error
will be printed in the log file instead:

Cannot load private key file /etc/openvpn/movpn/client1.key: error:0B080074:x509 certificate

routines:

 X509_check_private_key:key values mismatch

Error: private key password verification failed

Exiting due to fatal error

This problem can occur especially when the certificate and private key are renewed; it is a common mistake to use the old private key with the
new certificate.

How to fix

Ensure that the client's certificate and private key match. Surprisingly, there is no easy-to-use tool for this. To find out if the certificate and
private key belong together, we can use the following commands and look for the modulus sections:

$ openssl x509 -text -noout -in client1.crt

[…]

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:b2:17:bd:31:6d:56:d9:eb:c9:09:98:e2:c1:48:

 c9:6a:e4:4a:6b:54:52:ea:1e:60:94:6b:cb:5e:d5:

 a1:ef:83:05:f8:cf:a4:06:df:06:ee:d6:c8:75:65:

 de:a7:96:68:a1:41:d1:9d:f0:2c:84:3f:ca:b9:d2:

 e8:07:af:37:48:24:69:57:4e:09:70:66:47:6c:47:

 36:4d:c9:29:13:eb:ed:c1:aa:cd:36:84:3c:55:18:

 bc:ce:01:34:b5:89:04:dc:09:c5:ea:f2:57:9f:c2:

 f5:c1:05:dd:66:4d:11:13:05:47:46:26:1a:55:18:

 51:bd:89:65:ba:0d:89:bd:ea:03:58:5e:d3:d9:96:

 a5:5e:2f:5f:b9:c8:88:fc:48:95:cb:4a:b2:12:3b:

 b5:ed:4c:40:4c:50:8d:1d:eb:a5:c9:c0:e6:2c:ec:

 01:0a:56:ac:db:9e:e7:56:f0:06:f7:ba:b6:ac:de:

 41:d4:fb:b3:d6:f5:fe:13:b4:03:81:d9:f7:7c:2e:

 60:2f:9c:5a:81:eb:2e:3a:e1:c4:8b:f8:b6:8d:2d:

 f7:ec:7a:f6:2c:ff:af:1c:d2:7b:58:ca:9e:d1:f4:

 ed:8a:7a:35:00:97:a3:35:dd:79:02:b4:79:9a:66:

 3c:5e:c8:4d:87:eb:68:5d:45:29:73:70:7f:61:28:

 67:b1

$ openssl rsa -text -noout -in client1.key

Private-Key: (2048 bit)

modulus:

 00:b2:17:bd:31:6d:56:d9:eb:c9:09:98:e2:c1:48:

 c9:6a:e4:4a:6b:54:52:ea:1e:60:94:6b:cb:5e:d5:

 a1:ef:83:05:f8:cf:a4:06:df:06:ee:d6:c8:75:65:

 de:a7:96:68:a1:41:d1:9d:f0:2c:84:3f:ca:b9:d2:

 e8:07:af:37:48:24:69:57:4e:09:70:66:47:6c:47:

201

 36:4d:c9:29:13:eb:ed:c1:aa:cd:36:84:3c:55:18:

 bc:ce:01:34:b5:89:04:dc:09:c5:ea:f2:57:9f:c2:

 f5:c1:05:dd:66:4d:11:13:05:47:46:26:1a:55:18:

 51:bd:89:65:ba:0d:89:bd:ea:03:58:5e:d3:d9:96:

 a5:5e:2f:5f:b9:c8:88:fc:48:95:cb:4a:b2:12:3b:

 b5:ed:4c:40:4c:50:8d:1d:eb:a5:c9:c0:e6:2c:ec:

 01:0a:56:ac:db:9e:e7:56:f0:06:f7:ba:b6:ac:de:

 41:d4:fb:b3:d6:f5:fe:13:b4:03:81:d9:f7:7c:2e:

 60:2f:9c:5a:81:eb:2e:3a:e1:c4:8b:f8:b6:8d:2d:

 f7:ec:7a:f6:2c:ff:af:1c:d2:7b:58:ca:9e:d1:f4:

 ed:8a:7a:35:00:97:a3:35:dd:79:02:b4:79:9a:66:

 3c:5e:c8:4d:87:eb:68:5d:45:29:73:70:7f:61:28:

 67:b1

[…]

If we look closely at the modulus from both the public key (certificate) and the private key, we can see that they are equal. Thus, this certificate
and private key belong together.

Tip

When comparing moduli, it is often sufficient to compare the first few bytes and then the last few bytes.

The auth and tls-auth key mismatch
The auth and tls-auth options are used to authenticate both control channel and data channel packets using an HMAC signing algorithm.
The default value for the auth HMAC algorithm is SHA1, which uses 160-bit keys. There is no default value for the tls-auth option, as it is
not required. However, this option is recommended, as it provides an extra layer of protection against DDoS attacks.

If the auth algorithm specified in the client and server configurations do not match, then the server will not allow the client to begin the TLS
security handshake. Similarly, if the tls-auth files on the client and server mismatch, or if the wrong direction parameter is given on
either side, then the server will also not allow the client to begin the TLS security handshake.

Normally, the following option is specified in the server configuration file:

tls-auth /etc/openvpn/movpn/ta.key 0

Correspondingly, on the client we have the following option:

tls-auth /etc/openvpn/movpn/ta.key 1

Here, the second parameter defines direction of the tls-auth keys used. This parameter is not required, but it allows OpenVPN to use
different hashing (or HMAC) keys for incoming and outgoing traffic. The key used on the client to sign outgoing traffic must match the key
used on the server to verify incoming traffic, and vice versa.

If the wrong tls-auth key file is used, or if direction is omitted or not correctly specified, then the following entries will show up in the
server log file:

Authenticate/Decrypt packet error: packet HMAC

 authentication failed

TLS Error: incoming packet authentication failed from

 [AF_INET]<CLIENT-IP>:54377

In the meantime, the client will simply attempt to connect for 60 seconds before a timeout occurs.

How to fix

Make sure that the same tls-auth file is used in both client and server configuration files. Also, make sure that the direction parameter is
specified correctly on both ends (if used at all).

If you are still unsure of which HMAC keys are used for incoming and outgoing connections, you can increase the log file verbosity to see the
actual keys being used by both client and server. Let's add the following to both client and server configuration files:

verb 7

Now, both sides will print out a large amount of logging information at startup. The lines to look for in the log file are on the server side:

Outgoing Control Channel Authentication:

 Using 160 bit message hash 'SHA1' for HMAC authentication

Outgoing Control Channel Authentication:

 HMAC KEY: 4660a714 7f4d33f9 d2f7c61a 9f1d5743 4bf9411e

Outgoing Control Channel Authentication:

 HMAC size=20 block_size=20

Incoming Control Channel Authentication:

 Using 160 bit message hash 'SHA1' for HMAC authentication

Incoming Control Channel Authentication:

 HMAC KEY: cd1f6d9c 88db5ec7 d7977322 e01d14f1 26ee4e22

Incoming Control Channel Authentication:

 HMAC size=20 block_size=20

202

The HMAC size=20 line corresponds to the fact that 160-bit message hashing using SHA1 is used, as 160 bit is the same as 20 byte.

If the correct tls-auth file and direction parameter are used on the client side, we will find the following:

Outgoing Control Channel Authentication:

 Using 160 bit message hash 'SHA1' for HMAC authentication

Outgoing Control Channel Authentication:

 HMAC KEY: cd1f6d9c 88db5ec7 d7977322 e01d14f1 26ee4e22

Outgoing Control Channel Authentication:

 HMAC size=20 block_size=20

Incoming Control Channel Authentication:

 Using 160 bit message hash 'SHA1' for HMAC authentication

Incoming Control Channel Authentication:

 HMAC KEY: 4660a714 7f4d33f9 d2f7c61a 9f1d5743 4bf9411e

Incoming Control Channel Authentication:

 HMAC size=20 block_size=20

The incoming and outgoing control channel authentication keys are mirrored on the client versus the server, ensuring proper TLS
authentication.

The MTU size mismatch
OpenVPN uses two Maximum Transfer Unit (MTU) sizes:

tun-mtu: This specifies the MTU setting of the tun adapter and specifies the maximum size of each packet inside the VPN tunnel.
link-mtu: This specifies the maximum size of each packet outside the tunnel. This includes all padding, encryption, and
authentication bits, but it is not the actual packet size as it goes over the network. The actual packet size cannot be determined
beforehand, as the size of each packet can differ due to compression and encryption algorithms.

The default value of the tun-mtu parameter is 1,500 bytes, which is the default MTU size of an Ethernet adapter as well. Under normal
circumstances, we can use the following formula to compute the link-mtu size from the tun-mtu size:

link-mtu = tun-mtu + constant

Here, constant depends on the configuration options used. Among the configuration options that have an influence on this constant, we have
the following:

Compression options such as comp-lzo and comp-noadapt
The initialization vector (IV) size of the encryption parameter of the cipher option
The fragment option that adds an extra byte
The no-replay option that removes a byte

If we see link-mtu warning mismatch, this usually points to a misconfiguration elsewhere in our client and server configuration files. As you
will see in the subsequent examples, a mismatch in link-mtu between the client and the server can occur quite often. Normally, a VPN
connection will not function correctly if there is a link-mtu mismatch.

Tip

Resist the temptation to fix the link-mtu warning itself by explicitly setting it. First, fix the other warnings that may have caused the link-
mtu warning to appear.

The link-mtu parameter is also of great value when tuning a VPN connection. To get the maximum performance out of a VPN connection,
we will need to ensure that the packets are not fragmented by the operating system, as this will have a drastic impact on performance. Over
satellite-based links in particular, this can decrease performance almost to a stand-still.

If a different MTU size is specified on the server side compared to the client side, the following warning will appear in the log files:

WARNING: 'link-mtu' is used inconsistently,

 local='link-mtu 1441', remote='link-mtu 1541'

WARNING: 'tun-mtu' is used inconsistently,

 local='tun-mtu 1400', remote='tun-mtu 1500'

This shows that for a fairly default configuration, the link-mtu overhead is actually 41 bytes. Here, we have added to the client
configuration file:

tun-mtu 1400

At this point, the VPN connection will function. Performance will be limited, however, as packets need to be fragmented and reassembled. It is
possible to trigger an error with this setup by sending large ICMP packets with the do not fragment flag set. On Linux/FreeBSD, this can
be done by using the following command:

$ ping -M do -s 1450 10.200.0.2

On Windows, we use the following:

C:\> ping -f -l 1450 10.200.0.2

This will result in 100 percent packet loss for the ping command, and it will also show up in the log file:

203

Authenticate/Decrypt packet error:

 packet HMAC authentication failed

This error message may appear confusing at first, but it is caused by the fact that the sending party constructed and signed a packet which is
larger than 1,400 bytes. The client receives only the first 1,400 bytes of this packet and checks the signature, which fails. It then rejects the
packet and prints out the error.

How to fix

Make sure that, if you want to use the tun-mtu option that it is specified in both client and server configuration files.

The Cipher mismatch
The encryption cipher that is used for OpenVPN's data channel can be specified by using the following option with a default setting of BF-
CBC:

cipher aes-256-cbc

If a different cipher is specified in the client configuration file than in the server configuration file, then the log files on both sides will print out
a warning message but the VPN connection will come up. However, as soon as any traffic passes over it, it will fail to decrypt. We can see this
in the following excerpt from the client-side log file:

WARNING: 'link-mtu' is used inconsistently,

 local='link-mtu 1557', remote='link-mtu 1541'

WARNING: 'cipher' is used inconsistently,

 local='cipher AES-256-CBC', remote='cipher BF-CBC'

WARNING: 'keysize' is used inconsistently,

 local='keysize 256', remote='keysize 128'

[Mastering OpenVPN Server] Peer Connection Initiated

 with [AF_INET]<SERVER-IP>:1194

TUN/TAP device tun0 opened

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tun0 up mtu 1500

/sbin/ip addr add dev tun0 10.200.0.2/24 broadcast 10.200.0.255

Initialization Sequence Completed

Authenticate/Decrypt packet error: cipher final failed

The three warnings that are printed initially show both the different type and the different size of the cipher used. The default Blowfish
cipher uses 128-bit strength, whereas the AES-256 cipher uses 256-bit strength, resulting in a slightly larger encrypted packet (link-mtu of
1,541 bytes for Blowfish versus a link-mtu of 1,557 bytes for AES-256).

How to fix

Make sure that the same cipher is specified in both client and server configuration files. As both client and server log files print out the expected
cipher, it is a relatively easy error to fix.

Note

It is currently not possible to push a cipher from the server to the client. This is on the wish list of the OpenVPN developers, but it has a
substantial impact on the code. It is not going to be added to OpenVPN before Version 2.4 or even 2.5.

The Compression mismatch
OpenVPN has the ability to compress all VPN traffic that is on-the-fly. For certain types of traffic, such as plain web traffic, this can improve
the performance of the VPN, but it does add extra overhead to the VPN protocol. For incompressible traffic, this option actually slightly
decreases performance.

The option used to specify compression currently is as follows:

comp-lzo [no|yes|adaptive]

Note that we do not need to specify the second parameter. The default value is adaptive, if compression is used.

As we will learn in Chapter 10, Future Directions, this option will be superseded by a more generic compression option, allowing for
different compression mechanisms.

It is possible to push a compression option from the server to the client, but only if a compression option has been specified in the client
configuration file itself. If the client configuration file does not contain such an option, then the VPN connection will fail. The client log file will
show the following:

UDPv4 link remote: [AF_INET]<SERVER-IP>:1194

WARNING: 'link-mtu' is used inconsistently,

 local='link-mtu 1541', remote='link-mtu 1542'

WARNING: 'comp-lzo' is present in remote config but

 missing in local config, remote='comp-lzo'

[Mastering OpenVPN Server] Peer Connection Initiated with

 [AF_INET]<SERVER-IP>:1194

TUN/TAP device tun0 opened

204

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tun0 up mtu 1500

/sbin/ip addr add dev tun0 10.200.0.2/24 broadcast 10.200.0.255

Initialization Sequence Completed

write to TUN/TAP : Invalid argument (code=22)

The server log file will list the same WARNING messages, and it will also show decompression warnings:

client3/<CLIENT-IP>:45113 Bad LZO decompression header byte: 42

Note

Odd but true: if we wait long enough, the client will restart due to the compression errors and will attempt to reconnect. This time, however, the
connection will succeed, as the comp-lzo option still resides in memory.

How to fix

Make sure that, if you want to use compression, the comp-lzo option is specified in both client and server configuration files. With the
comp-lzo option in the client-side configuration file, we can now control the type of compression used at the server side using a push option.
Use the following:

comp-lzo no

push "comp-lzo no"

This will turn off compression, but unfortunately this is not the same as not specifying any compression method at all. This will hopefully be
addressed in a future release.

The fragment mismatch
One of the most commonly used tuning parameters is the fragment option. You will learn more about this option in the section How to
optimize performance by using ping and iperf later in this chapter.

Like the comp-lzo option, the fragment option does not need to be specified on either side. However, we cannot specify it only on one
side; it must be configured on both. If it is specified only on one side, then it must also be specified on the other. Technically speaking, it is not
even necessary to use the same value for the fragment option on both sides, but it is recommended.

If the fragment option is not specified on the client side but it is used on the server side, then the VPN connection will not function properly,
as can be seen in the client's log:

WARNING: 'link-mtu' is used inconsistently,

 local='link-mtu 1541', remote='link-mtu 1545'

WARNING: 'mtu-dynamic' is present in remote config but

 missing in local config, remote='mtu-dynamic'

[Mastering OpenVPN Server] Peer Connection Initiated with

 [AF_INET]194.171.96.101:1194

TUN/TAP device tun0 opened

do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0

/sbin/ip link set dev tun0 up mtu 1500

/sbin/ip addr add dev tun0 10.200.0.2/24 broadcast 10.200.0.255

Initialization Sequence Completed

write to TUN/TAP : Invalid argument (code=22)

Again, it will appear as if the VPN has come up (Initialization sequence completed), but the log file will fill up with code=22
error messages.

Note that the warning actually lists mtu-dynamic, which is the deprecated name of this feature.

How to fix

Make sure that, if you want to use the fragment option, then it is specified in both client and server configuration files.

Note that, unlike the comp-lzo option, this feature cannot be pushed from the server to the client.

The tun versus tap mismatch
The most common use case for using a tap style network is a bridged setup, as we have learned in Chapter 6, Client/Server Mode with Tap
Devices. Not all devices, however, support a tap-style network. Most notably, all Android and iOS devices lack this capability. Hence, if we
connect such a device to a tap style OpenVPN server, the server log file will list warnings from these clients:

<CLIENT-IP>:39959 WARNING: 'dev-type' is used inconsistently,

 local='dev-type tap', remote='dev-type tun'

<CLIENT-IP>:39959 WARNING: 'link-mtu' is used inconsistently,

 local='link-mtu 1573', remote='link-mtu 1541'

<CLIENT-IP>:39959 WARNING: 'tun-mtu' is used inconsistently,

 local='tun-mtu 1532', remote='tun-mtu 1500'

Apart from these warnings, the server will not detect anything about the connecting clients. On the client, similar warnings will be listed, along
with this one:

205

WARNING: Since you are using --dev tun with a point-to-point topology, the second argument to --

ifconfig must be an IP address. You are using something (255.255.255.0) that looks more like a

netmask. (silence this warning with --ifconfig-nowarn)

As we cannot push the subnet topology in a tap-style setup, the client falls back to a default Net30-style network. This type of network is
inherently incompatible with a tap-style network, but apart from that, the client does not list any warnings or errors.

Even if we were to (erroneously) add a topology subnet to suppress this warning on the client, the VPN would still not function correctly.

How to fix

Make sure that the same type of network (tun or tap) is used on both sides. If you must use Android or iOS devices, then you must set up a tun-
style server configuration, as these operating systems do not support a tap-style network.

The client-config-dir issues
In Chapter 4, Client/Server Mode with tun Devices, we learned about CCD files and their uses in the section Client-specific configuration –
CCD files. CCD files are generally used to connect a client-side LAN to the server network by using an iroute statement.

Experience on the OpenVPN mailing lists and forums has shown that the client-config-dir option is susceptible to error and
misconfiguration. The three main reasons for this are as follows:

The CCD file or the directory in which it resides, cannot be read by OpenVPN after it switches to a safe user, such as nobody.
The client-config-dir option was specified without an absolute path.
The name of the CCD file is not listed correctly. Normally, the name of a CCD file is the same as the name from /CN= field of the
client certificate, without /CN= part and without any extension!

With the normal log level, OpenVPN does not complain if it cannot find or read a CCD file. It simply treats the incoming connection as a
standard connection, and thus the required iroute statement is never reached.

The easiest way to debug this is to temporarily add an extra option to the server configuration:

ccd-exclusive

Restart the server and have the client try to reconnect. If the server cannot read the appropriate CCD file for a connecting client, it will refuse
access. If this happens, we know that the CCD file has not been read. If the client can connect, then there is a different issue—most likely a
routing issue.

Another way to see what the OpenVPN server does with CCD files is to increase the log level to 4 and reconnect a client for which a CCD file
is listed. The contents of this CCD file for the client with the certificate /CN=client1 are as follows:

ifconfig-push 10.200.0.99 255.255.255.0

iroute 192.168.4.0 255.255.255.0

This instructs the OpenVPN server to assign the VPN IP address 10.200.0.99 to this client, and to route the subnet 192.168.4.0./24
via this client. The server log file now lists the following:

<CLIENT-IP>:38876 [client1] Peer Connection Initiated with [AF_INET]<CLIENT-IP>:38876

client1/<CLIENT-IP>:38876 OPTIONS IMPORT: reading client specific options from:

/etc/openvpn/movpn/clients/client1

client1/<CLIENT-IP>:38876 MULTI: Learn: 10.200.0.99 -> client1/<CLIENT-IP>:38876

client1/<CLIENT-IP>:38876 MULTI: primary virtual IP for client1/<CLIENT-IP>:38876: 10.200.0.99

client1/<CLIENT-IP>:38876 MULTI: internal route 192.168.4.0/24 -> client1/<CLIENT-IP>:38876

client1/<CLIENT-IP>:38876 MULTI: Learn: 192.168.4.0/24 -> client1/<CLIENT-IP>:38876

If the highlighted line is not present, then the CCD file is not read. Also, the next lines starting with MULTI: show how the OpenVPN server
interprets the lines found in the CCD file. This can be important to further debug any iroute issues.

How to fix

If the server process cannot read the CCD file, then check the permissions of the full path to the file, including all subdirectories leading to it.
Make sure the user specified with the user option has permission to read all directories and the CCD file itself.

Make sure that the client-config-dir option lists an absolute path instead of a relative one. Also, if we are using the chroot option (see
the manual page for details), then make sure the client-config-dir directory is visible inside chroot-jail.

Use the ccd-exclusive option to quickly determine if OpenVPN can read the CCD file. If it can, then increase the log level on the server
side to see how OpenVPN interprets the statements found in the CCD file.

No access to the tun device in Linux
If OpenVPN is started with insufficient privileges, or if OpenVPN is set to drop root privileges and switch to another userid (for example,
nobody), then access to the tun device can be lost. This can also occur if OpenVPN is used in a virtualized environment, such as OpenVZ or
Virtual Private Server (VPS).

If OpenVPN is started with insufficient privileges, the VPN connection will not come up at all:

UDPv4 link local: [undef]

206

UDPv4 link remote: [AF_INET]<SERVER-IP>:1194

[Mastering OpenVPN Server] Peer Connection Initiated with

 [AF_INET]<SERVER-IP>:1194

ERROR: Cannot ioctl TUNSETIFF tun: Operation not permitted

 (errno=1)

Exiting due to fatal error

Check userid or use sudo to switch to a privileged user before starting OpenVPN.

The more common scenario when insufficient privileges are available is after an automatic restart of the VPN connection. Consider the
following client configuration file:

client

proto udp

remote openvpnserver.example.com

port 1194

dev tun

nobind

remote-cert-tls server

tls-auth /etc/openvpn/movpn/ta.key 1

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/client3.crt

key /etc/openvpn/movpn/client3.key

user nobody

group nobody

This is the basic configuration file with two lines added at the bottom. When we launch the VPN connection using this configuration file, the
connection comes up properly, but a warning is printed:

WARNING: you are using user/group/chroot/setcon without persist-tun -- this may cause restarts

to fail

Indeed, after the VPN connection needs to be restarted (for example, due to a bad network connection), the restart will fail:

[Mastering OpenVPN Server] Inactivity timeout (--ping-restart),

 restarting

Mon Jun 1 16:51:50 2015 /sbin/ip addr del dev tun0 10.200.0.2/24

RTNETLINK answers: Operation not permitted

Linux ip addr del failed: external program exited with error

 status: 2

SIGUSR1[soft,ping-restart] received, process restarting

WARNING: you are using user/group/chroot/setcon without

 persist-key -- this may cause restarts to fail

Error: private key password verification failed

Exiting due to fatal error

Here, we see that OpenVPN failed to restart as the user nobody was not allowed to read the private key that was used for this connection. If we
had specified a user that did have the right permissions, we would have seen a different error:

ERROR: Cannot ioctl TUNSETIFF tun: Operation not permitted

 (errno=1)

Exiting due to fatal error

Note that, during the restart, OpenVPN cannot shut down the existing tun device or delete any system routes. This will also be the case if
persist-tun is used, but in that case it would be harmless.

How to fix

Add the following options to the client configuration file if you are using the user and/or group options as well:

persist-tun

persist-key

Make sure you start OpenVPN with sufficient privileges.

Also, make sure that OpenVPN has the right SELinux security context, or try running OpenVPN with SELinux set to permissive or disabled
mode:

setenforcing permissive

Missing elevated privileges in Windows
With some older versions of the OpenVPN installer program for Windows, the right privileges were not set for the OpenVPN GUI application.

For this particular example, a single route was pushed from the OpenVPN server to all clients:

push "route 192.168.122.0 255.255.255.0"

207

On Windows Vista and higher, OpenVPN needs elevated privileges to be able to add or remove system routes. If these privileges are not
present, the VPN will usually be initialized correctly and the GUI-icon will turn green:

We can even ping the OpenVPN server on its VPN server IP address. However, the log file in the OpenVPN GUI will show some errors:

The first line is actually tricky:

Warning: cannot open -log file:: Access is denied

The tricky part is that as soon as we click on the Disconnect button, the log is gone, as it could not be written to disk! This is caused by the fact
that the default log directory C:\Program Files\OpenVPN\log is accessible only to a user with elevated privileges.

The last few lines in the log file tell us that OpenVPN was unable to add the route that was pushed by the server. Again, this is caused by the
fact that the OpenVPN program was run with insufficient privileges.

How to fix

After restarting the OpenVPN GUI with elevated privileges (turn on Run as Administrator), the route is added correctly. This can be seen
from the routing table:

208

The pushed route, 192.168.122.0/24, is now present in the routing table, using the server's VPN IP address 10.200.0.1 as the gateway.

209

Troubleshooting routing issues
Most of the questions asked on the OpenVPN e-mail lists and user forums are actually routing questions. Setting up a VPN connection is one
thing, but integrating it into your existing network is quite another. To a novice, the difficult part is to see where OpenVPN stops and where
routing begins. This section is intended as a step-by-step guide to troubleshoot routing issues in a fairly basic OpenVPN setup.

Consider the following network plan:

The network at the main office location needs to be made accessible to a secondary office and to people working from home
The servers in the secondary office needs to be made accessible to the IT department of the main office
The people working from home only need to access the computer resources at the main office

For this, an OpenVPN server is set up at the main office, with the employees connecting as regular VPN clients, and with the secondary office
connecting as a special client, disclosing its own network.

Drawing a detailed picture
Before creating the configuration files for OpenVPN, draw a detailed picture of the network layout, including all subnets, IP addresses, gateway
IP addresses, interface names, and more.

The public IP addresses used are not listed in this picture, but it is recommended to do so. Also, the connections from people working from
home are not included, but they will connect to the public IP address of gateway1 in the preceding picture.

On gateway1, a port forwarding rule is added, so incoming and outgoing UDP traffic on port 1194 is forwarded to the OpenVPN server at
172.31.1.2:1194.

As we need to disclose the network in the secondary office, we will also need to use a client-config-dir file with the appropriate
iroute statement.

The server and client configuration files for this setup are already listed in Chapter 4, Client/Server Mode with tun Devices, with some minor IP
address changes. The new set of configuration files is as follows:

proto udp

port 1194

dev tun

server 10.200.0.0 255.255.255.0

tls-auth /etc/openvpn/movpn/ta.key 0

dh /etc/openvpn/movpn/dh2048.pem

ca /etc/openvpn/movpn/movpn-ca.crt

cert /etc/openvpn/movpn/server.crt

key /etc/openvpn/movpn/server.key

persist-key

persist-tun

keepalive 10 60

topology subnet

user nobody

group nobody

verb 3

daemon

log-append /var/log/openvpn.log

push "route 172.31.1.0 255.255.255.0"

client-config-dir /etc/openvpn/movpn/clients

210

route 192.168.3.0 255.255.255.0 10.200.0.1

This file is saved as movpn-09-01-server.conf. For the OpenVPN client in the secondary office, a special certificate is created with the
name /CN=SecondaryOffice. The corresponding CCD file, therefore has the name
/etc/openvpn/movpn/clients/SecondaryOffice. Its contents are as follows:

ifconfig-push 10.200.0.200 255.255.255.0

iroute 192.168.3.0 255.255.255.0

For all clients, the basic-udp-client.conf or basic-udp-client.ovpn configuration file can be used. This, by the way, shows the
flexibility of OpenVPN's configuration files. In most cases, there is no need to change the client configuration files, even if the network layout
on the server side is modified, or a secondary network is brought into the VPN.

Next, we start the OpenVPN server and the secondary office client, and we make sure that the CCD file is picked up. The VPN client in the
secondary office can ping the OpenVPN server at its VPN IP address, and so can a test user at home.

Note

At this point, the VPN is working, but routing is not.

Start in the middle and work your way outward
The most efficient method to troubleshoot this setup is to consider the VPN link as the middle, and then work outwards step-by-step until all
parts of the network are connected. First, there are some tests to perform on the OpenVPN client in the secondary office. For almost all tests, a
simple ping command will suffice.

Note that it does not make sense to move on to the second test if the first test is failing, and similarly, to the third test, if the second test is not
yet working:

Can the client reach the server's VPN IP address?

This should function; otherwise, there is a problem with our VPN. It could be a very restrictive firewall/iptables setup on the server. The
VPN server IP should be private (RFC1918, typically) and, thus, won't be routable across the general internet.
Can the client reach the server's LAN IP address?

If this is not functioning, then most likely there is a firewall or iptables rule that is blocking access. Check the inbound rules or try
disabling the firewall rules for debugging.
Can the client reach the server-side gateway IP address?

If not, then check the answers to the following questions:
Is IP forwarding enabled on the server?
Is there a firewall/iptables rule blocking forwarding access to the server from a particular IP range?
Is there a firewall rule on the server-side gateway blocking access from non-LAN IP addresses? (This would be a good security
policy.) If so, then it needs to be adjusted to allow traffic coming from the VPN IP 10.200.0.0/24.
Is there a return route on the gateway to tell it where packets originating from the VPN should go back to? Packets with
destination address in the 10.200.0.0/24 range should be forwarded to the OpenVPN server at IP 172.31.1.2 on the router
gateway1. Note that this is usually not the case. The actual syntax for adding such a route to the gateway depends on the
model and firmware of the router used.

Can the client reach another server on the server-side LAN?

If not, then check the answers to the following questions:
Does this server on the server-side LAN have the proper gateway as the default gateway?
Is there a firewall rule on the server blocking access from non-LAN-IP addresses? (This would actually be a good security
policy!)

After making sure that the client can reach all machines on the server-side LAN, it is time to make sure that the reverse is also true. Ensure that
the OpenVPN server can reach all machines on the LAN behind the secondary client. The tests to perform are very similar:

Can the server reach the client's VPN IP address?

This should function; otherwise, there is a problem with our VPN. It could be a very restrictive firewall/iptables setup on the client.
However, at this point it is highly unlikely to be a problem. Better safe than sorry, though, so let's test this.
Can the server reach the client's LAN IP address?

If this is not functioning, then most likely there is a firewall/iptables rule that is blocking access. Check the inbound rules.
Can the server reach the client-side gateway IP address?

If not, then check the answers to the following questions:
Is IP forwarding enabled on the secondary office client?

Is there a firewall/iptables rule blocking forwarding access on the client from a particular IP range?

Is there a firewall rule on the client-side gateway blocking access from non-LAN IP addresses? (This would be a good security
policy.) If so, then it needs to be adjusted to allow traffic coming from the VPN IP 10.200.0.1.
Is there a return route on the gateway in the secondary office to tell it where packets originating from the VPN should go back
to? Packets with the source address 10.200.0.1 should be forwarded to the OpenVPN client at IP 192.168.3.17 on the
router gateway2. Note that this is usually not the case. The actual syntax for adding such a route to the gateway depends on the
model and firmware of the router used. Also, note that we only allow packets from the OpenVPN server itself to pass through, as
all other clients do not require access to this network.

211

Can the OpenVPN server reach another machine on the client-side LAN?

If not, then check the answers to the following questions:
Does this server on the client-side LAN have the proper gateway as the default gateway?
Is there a firewall rule on the server blocking access from non-LAN-IP addresses? (This would actually be a good security
policy!)

At this point, the OpenVPN client in the secondary office should be able to reach all machines in the server-side LAN, and the OpenVPN server
in the main office should be able to reach all machines in the client-side LAN. There is only one more step: make sure that the servers on the
server-side LAN can reach the servers on the client-side LAN and vice versa. Again, there are four tests to perform, starting on a machine on the
server-side LAN:

Can this machine reach the OpenVPN client's VPN IP address?

This should function, as the client can reach this machine, as a result of the fourth test. However, better safe than sorry, so let's test this.
Can this machine reach the client's LAN IP address?

If this is not functioning, then most likely there is a firewall or iptables rule that is blocking access. Check the inbound rules on the
OpenVPN client.
Can the server-side LAN machine reach the client-side gateway IP address?

If not, then check the answers to the following questions:
Is IP forwarding enabled on the secondary office client? Is there a firewall/iptables rule blocking forwarding access on the client
for a particular IP range? Note that packets coming from the machine on the server-side LAN will have a different source
address (172.31.1.X) to that of the OpenVPN server itself (10.200.0.1).
Is there a firewall rule on the client-side gateway blocking access from non-LAN-IP addresses? (This would be a good security
policy.) If so, then it needs to be adjusted to allow traffic coming from the server-side LAN IP range 172.31.1.0/24.
Similarly, a firewall rule may need to be added on the server-side gateway to allow traffic coming from the client-side LAN IP
range 192.168.3.0/24.
Is there a return route on the gateway in the secondary office to tell it where packets originating from the VPN should go back
to? Packets with source address 172.31.1.0/24 should be forwarded to the OpenVPN client at IP 192.168.3.17 on the
router gateway2. Note that this is usually not the case.

Can the server-side LAN machine reach another machine on the client-side LAN?

If not, then check the answers to the following questions:
Does the server on the client-side LAN have the proper gateway as the default gateway?
Is there a firewall rule on the client-side machine blocking access from non-LAN-IP addresses? (This would actually be a good
security policy!)

By methodically working through all of these steps, we can resolve almost all routing issues. In some cases, more advanced debugging
techniques may be required. This may require us to temporarily disable firewall rules, so special care should be taken before attempting this.

Find a time to temporarily disable firewall
There have been too many cases on the OpenVPN mailing lists of people not being able to get routing to work, where it turned out to be a
firewall or iptables rule that was too restrictive. There is no need to disable all firewall rules, but if you get stuck at one of the twelve steps listed
previously, then try disabling the firewall related to the device that you cannot reach or that you are sending traffic from.

Note

If you need to make use of a NATted setup then make sure that you do not disable the NATting rules.

If all else fails, use tcpdump
The low-level networking tool tcpdump is a great tool for testing connectivity. In order to debug routing issues, we can use tcpdump to see if
any traffic is arriving at or leaving a particular network interface, and we can check the source and destination addresses of this traffic. On a
Windows client or server, it might be easier to run Wireshark (http://www.wireshark.org), which provides similar functionality, including a
GUI.

In the twelve steps listed previously, the following tcpdump statements can help:

1. Run tcpdump -nnel -i tun0 on the server to see if any traffic is coming in over the VPN at all.
2. Run tcpdump -nnel -i eth0 on the server (where eth0 is the LAN interface of the server in use) to see if any traffic is coming

in on the LAN interface at all. If not, then most likely a firewall rule is dropping inbound traffic on the tunnel interface.
3. Run tcpdump -nnel -i eth0 on the server to see if any traffic is leaving the LAN interface with the following:

source address = 10.200.0.200

destination address = 172.31.1.254

Also, check whether we can see return traffic from the server-side gateway with the source and destination addresses reversed.
4. Again, run tcpdump -nnel -i eth0 on the server to see if any traffic is leaving the LAN interface with the following packet

headers:

source address = 10.200.0.200

destination address = 172.31.1.XXX

Here, 172.31.1.XXX is the IP address of the machine we are trying to reach on the server-side LAN. Is there any return traffic seen?

212

http://www.wireshark.org

And so on and so on for the remaining steps!

213

How to optimize performance by using ping and iperf
Getting maximum performance out of an OpenVPN setup can be difficult to achieve. On a clean Ethernet network, the default settings of
OpenVPN are fairly good. However, some tuning is required on gigabit-speed networks.

When an ADSL or cable-modem connection is used, performance is also usually pretty good. However, under certain circumstances, the
performance of our OpenVPN tunnel can fall way behind the performance of the normal network. These circumstances are almost always ISP-
dependent, but nevertheless, it is worthwhile exploring how to increase performance.

The key to optimizing performance is to have good tools for measuring performance in the first place. Two basic, yet invaluable, tools for
measuring network performance are ping and iperf. The iperf tool is readily available on Linux, FreeBSD, and Mac OS. There are ports
available for Windows and even Android.

Using ping
Using ping, we can determine the optimal MTU size for our network. Most network operators now provide their customers with an Ethernet-
style MTU of 1,500 bytes. This leads to an effective packet payload of 1,472 byes. The remaining 28 bytes are the TCP/IP overhead for things
like the source and destination address.

However, if there is a network between the client and the server that has a lower MTU, then it can greatly increase performance to reduce the
size of the OpenVPN packets to just below that size. To find out what the maximum transfer size is for our network, we use the following:

$ ping -M do -s 1472 www.example.org

On Windows, we use the following:

C:\> ping -f -l 1472 www.example.org

This will send ICMP packets to a remote server of our choice, with the do not fragment flag set, instructing the network routers not to
break up this packet into smaller bits. If there is a network between the client and the server with a smaller MTU, then the ping command will
fail:

$ ping -M do -s 1472 www.example.org

PING www.example.org (IP) 1472(1500) bytes of data.

ping: local error: Message too long, mtu=1480

This tells us that performance will most likely improve if we use either a fragment size of 1,480 or an MTU size that is 1,480 bytes instead of
the default value of 1500. Note that this is not a guarantee—only by measuring the actual VPN performance we will know what the impact
actually is.

Using iperf
By using iperf, we can measure the performance of a network, both inside and outside a VPN tunnel. This will give us valuable insight into
how much bandwidth we are wasting by using a VPN tunnel.

Before measuring the performance of the VPN tunnel itself, always try to measure the performance of the normal network. It will be quite hard
to make the VPN perform better than the underlying network.

First, launch iperf on the server with the following command:

$ iperf -s

Next, launch iperf on the client with the following command:

$ iperf -c openvpn.example.org

On the cable network that was used for testing, the result is as follows:

214

This is actually the upload speed of the cable connection used. We can now test the performance of the VPN tunnel over the same network:

[3] 0.0-10.8 sec 5.25 MBytes 4.09 Mbits/sec

Repeating the measurement yields very similar numbers, so it is fair to state that the performance of the VPN tunnel is a few percent below that
of the underlying network. This actually makes sense, as the use of a VPN does introduce some overhead for the encapsulation, encryption, and
authentication (signing) of the original data. It will be hard to further optimize this network.

Similarly, for the download speed of the cable connection used, we find that the performance of the VPN tunnel is a few percent lower:

Performance of the underlying network is shown as follows:

[4] 0.0-10.6 sec 51.6 MBytes 40.7 Mbits/sec

Now, compare this to the VPN tunnel:

[4] 0.0-10.7 sec 49.5 MBytes 39.0 Mbits/sec

Again, we see a 4.5 percent drop in performance.

We can now use the fragment and mssfix parameters to see if we can increase performance. There will be a little bit trial-and-error work in
order to find the sweet spot for a particular setup. It is not known what the exact sweet spot will be in advance, but the method for finding it is
always the same. Now, add the options to both client and server configuration files:

fragment X

mssfix

By doing this and by varying X, we get the following results:

X (bytes) Download (Mbps) Upload (Mbps)

1200 37.9 3.94

1300 38.1 4.01

1400 38.4 4.04

1472 38.8 4.06

1500 37.6 3.98

<none> 39.0 4.09

We can conclude that OpenVPN's default settings are actually the sweet spot for this network. We could repeat this exercise by varying the
tun-mtu parameter, but we would find the same result. However, it is advisable to first tune performance by using the fragment parameter,
as this parameter has less influence on the forwarding of packets.

Gigabit networking
We will now perform the same procedure on a non-utilized gigabit Ethernet network. The iperf performance of the underlying network is 950
Mbps up and down.

When we launch the OpenVPN server using the basic-udp-server.conf configuration and attach a client to it by using the basic-
udp-client.conf configuration file, we achieve the following iperf performance:

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 193 MBytes 161 Mbits/sec

[4] 0.0-10.0 sec 242 MBytes 203 Mbits/sec

There is now a clear drop in performance. Unfortunately, lowering the fragment parameter does not help us here. With fragment 1200,
we achieve 149 Mbps and 115 Mbps, respectively.

On high-speed networks, it also makes sense to experiment with the encryption cipher. The servers used in this example are both capable of fast
AES instructions, thanks to the AES-NI extension that is present on the CPUs (a 2 GHz Xeon E5 2620 and a 3.5 GHz (turbo) Xeon E5 2643,
respectively). Let's add the following:

cipher aes-256-cbc

We now get the following result:

[5] 0.0-10.0 sec 316 MBytes 265 Mbits/sec

215

[4] 0.0-10.0 sec 266 MBytes 223 Mbits/sec

On a capable CPU, the cipher has a large impact on performance. As OpenVPN is a monolithic program, a high number of cores do not help at
all. The clock speed of the CPU is a dominant factor. By connecting a 3.8 GHz (turbo) Core i7 laptop to the 3.5 GHz Xeon E5-2643 server, we
achieve a much higher throughput using the exact same configuration:

[5] 0.0-10.0 sec 707 MBytes 593 Mbits/sec

[4] 0.0-10.0 sec 529 MBytes 443 Mbits/sec

Thus, if you want to set up an OpenVPN tunnel across a high-speed network, then the best advice is to use high clock speed CPUs that have
support for the AES-NI instruction set. With such a setup, it is possible to achieve network speeds of over 500 Mbps in both directions.

216

Analyzing OpenVPN traffic by using tcpdump
The low-level networking tool tcpdump, or its GUI equivalent Wireshark, is a last resort tool for troubleshooting network issues and network
performance. In this section, we will walk through the process of capturing and analyzing the encrypted network traffic produced by OpenVPN.

First, we set up our standard OpenVPN network using the basic-udp configuration files. On the client, there is also a web server running.
We will use the wget command on the server side to retrieve a file from the web server so that we can look at the resulting network traffic.

We run tcpdump on the Ethernet interface and capture the network traffic while doing a wget outside the tunnel:

wget -O /dev/null https://CLIENT-IP/test1

The resulting tcpdump output is as follows (modified for the sake of clarity):

As we can see, there are 13 packets to transfer a 5 KB text file. Most of these packets were used to set up and tear down the connection, but
there are four large packets that were used to actually transfer the data. The first three of the four packets are 1,514 bytes in size, which is the
maximum size of an Ethernet packet.

Next, we run the same wget command inside the tunnel. We now observe the encrypted traffic on the Ethernet adapter:

217

Here, we see 22 packets being captured. The first and last two packets are OpenVPN heartbeat packets and can be ignored. The remaining
18 packets are the encrypted equivalent of the packets shown in the first tcpdump output. As we can see here, the length of the packet is
slightly smaller, and especially the payload of each packet is quite a bit smaller: the largest UDP payload packet is 1,445 bytes. These
1,445 bytes contain the encrypted and signed data from the wget command. In our setup, we did not specify a fragment parameter, which
means that OpenVPN 2.3 will default to an internal fragmentation of 1,450 bytes.

The total size of each packet never exceeds 1,487 bytes, which is fairly close to optimal: normally, packets should not exceed the MTU size,
which is 1,500 bytes.

This tcpdump screen dump also shows that there is no fragmentation occurring other than within OpenVPN. This is good, as we want to avoid
packet fragmentation by the operating system, or the network, for maximum performance. If we had seen packet fragmentation here, then this
would have been an excellent indication that we needed to add extra fragmentation in our OpenVPN configuration.

Let's take a look at what happens if we add fragment 1400 to our setup. We restart the server and client and rerun the wget command:

218

With fragment 1400 added to our setup, we can see in the tcpdump output that the packet payload is now 1,397 bytes in size, which is
very close to the limit of 1,400. We can also see that more packets are now needed to transfer the 5 KB text file over the tunnel, which means a
decrease in performance. From this screenshot, we can conclude that we should remove the parameter again.

From the preceding screenshot and the previous one, we can also deduce that each OpenVPN packets incurs a 42-byte overhead. This overhead
partly contributes to the overhead incurred by using any VPN solution. It does comprise the entire overhead, as all network packets need to
contain overhead information about the source address, destination address, packet type, checksums, flags, and many more.

Finally, let's take a look at the contents of an actual encrypted OpenVPN packet. For this, it is handy to use the Wireshark tool
(http://www.wireshark.org). Wireshark basically provides a GUI on top of the low-level tcpdump tool. It can decode the contents of most
types of network traffic, as we can see in the following screenshot (the screenshot has been anonymized for privacy reasons):

This screenshot tells us the following things:

The actual packet size is 1487 bytes.
It contains Ethernet and IPv4 headers, like any network packet on an Ethernet network.
This is an OpenVPN packet with source port 35400 and destination port 1194, which means that it is travelling from the client to the
server. It actually is one of the encrypted packets of the 5 KB file transfer from the client to the server.
The payload of the packet is an OpenVPN data packet (format version 1), with a payload size of 1,487 bytes. Note that tcpdump
reported 1,488 bytes earlier, but Wireshark can decode the payload and see that the first byte is an OpenVPN opcode.

This packet will be received by OpenVPN, checked for authentication, decrypted, and decompressed (if we had specified). The resulting
unencrypted packet is then forwarded to the operating system's routing tables, which decide where to route the packet to. In our case, the packet
will remain on the server and will be given to the wget process.

219

http://www.wireshark.org

Summary
In this chapter, you learned some basic techniques for troubleshooting and tuning OpenVPN. You also got an insight into reading the client and
server log files. You learned how to detect and fix some of the most often-made mistakes. Most questions on the OpenVPN e-mail list are about
routing issues, therefore we discussed detecting and fixing routing problems. Finally, there is a large difference between a working setup and a
well-working setup, so we looked at examples on how to detect and address performance issues.

Of course, OpenVPN is not perfect, and therefore your non-working setup could also be caused by a bug in OpenVPN itself. There are several
channels for reporting bugs, including an e-mail list (<openvpn-users@lists.sourceforge.net>), an IRC channel (#openvpn on
freenode.net IRC), and a forum website (https://forums.openvpn.net). You can also report feature requests or wish lists to these channels, some
of which might make it into a future version of OpenVPN.

In the next chapter, you will learn what is new in the upcoming OpenVPN releases. You will also learn what are the currently known issues
with the OpenVPN codebase and you will learn about the plans in place to address these issues.

220

mailto:openvpn-users@lists.sourceforge.net
https://forums.openvpn.net

Chapter 10. Future Directions
The history of OpenVPN has been bumpy—ranging from a fledgling starter, to widely used, to nearly dead, and back again. The gap in
development from 2006 to roughly 2009 was significant, but the hard work and dedication of developers such as David Sommerseth (dazo),
Gert Doering (cron2), Steffan Karger, and Samuli Seppänen has given the project a successful recent past and a bright future.

OpenVPN is available on nearly every platform available. Snom (an IP phone manufacturer), for example, includes a version of their VOIP
phone firmware with an OpenVPN client included. pfSense, OpenWRT, and other WAP/firewall operating systems include OpenVPN and
(usually) a web interface to manage deployment.

In recent years, OpenVPN has been available on many mobile phones as well. The first was available for Android, OpenVPN for Android by
Arne Schwabe. This utilized a ported tun driver and did not support tap mode (bridged) VPNs.

The OpenVPN application for iOS (Apple) didn't come until much later, however. It took OpenVPN Technologies, Inc. nearly a year to
negotiate with Apple to support an external VPN API and grant access to that API for their use. On Android, the OpenVPN source could be
ported to the platform, with some omissions for tap, since the tap driver was not available on the platform. Due to the development environment
on iOS, the client had to be written from the ground up. James Yonen wrote a nearly feature-complete client in a few months in C++ and
OpenVPN Connect was published to the App Store®.

Current strengths
OpenVPN 2.3 is light years ahead of where we stood in the recent past. A quick glance at the change list from around 2008 until now shows
quite a significant number of important updates, bug fixes, and enhancements.

There are a number of things OpenVPN does well. OpenVPN is extensible, pluggable, and dynamic. It has functional support for IPv6, push
default gateway (even in broken networks), and floating across public IPs while maintaining connections.

Cross-platform support is unbeatable across the various VPN implementations.

221

Current weaknesses
There are notable weaknesses in the current version of OpenVPN. First, the entire application is written as a single, monolithic application. The
same binary that is used for client connections is also used as the server instance. This isn't too much of a problem, but there is no
modularization of code, so all of the logic needs to be handled regardless of the context in which the application is executed.

Working through the monolithic design woes, developers will have an easier time implementing features such as IPv6, additional compression
algorithms, and so on. Also, changes to improve the network stack need to be updated in many places within the code, rather than a single
library or component. This is the reason the IPv6 and IPv4 stacks are handled separately today.

Scaling at gigabit speeds and above
Typically, on modern hardware, OpenVPN is able to support a couple of hundred client connections before kernel limitations reduce
performance to unfavorable levels. This limit hasn't been a problem until more recently when higher speed internet connections have become
available. In the past, a single OpenVPN server on a good uplink could easily keep pace with many client connections on a typical home
Internet connection.

Today, however, gigabit connections at home aren't rare, and even where they are unavailable now, these high-speed uplinks will be available in
the very near future. With the right high-clock speed processor, OpenVPN is capable of (nearly) saturating a gigabit Ethernet link.

This requires the AES encryption instructions (known as AES-NI) found in modern processors, such as Intel's Core i7 and Xeon E5 processors,
as well as modern AMD processors. It also requires the encryption cipher to be set to AES, for example, by using --cipher aes-256-cbc
in both server and client configurations.

Note

It is not possible to push the encryption cipher from the server to the client. This is a limitation of the current design of OpenVPN, and it will
hopefully be addressed in a future version.

The operating system and encryption library also play a role here. Most server setups use the OpenSSL libraries for encryption and decryption.
Support for the AES-NI instruction set was included only in OpenSSL 1.0.0. CentOS 5, for example, still uses OpenSSL library (0.9.8e-fips),
which does not have support for these instructions. It is quite easy to verify whether a processor and the operating system make use of the AES-
NI instructions. Using the openssl speed command, you can quickly determine encryption performance for both OpenVPN's default cipher
(BlowFish or bf-cbc) and the AES cipher (aes-256-cbc):

$ openssl speed -evp bf-cbc

[…]

type … 256 bytes 1024 bytes 8192 bytes

bf-cbc … 137977.26k 138565.97k 137470.47k

$ openssl speed -evp aes-256-cbc

type … 256 bytes 1024 bytes 8192 bytes

aes-256-cbc 566760.53k 588199.94k 591250.12k

This test was run on an Intel Core i7-4810MQ processor running Fedora 20 and clearly, AES is much faster than BlowFish. We can safely
conclude that AES-NI is supported by both the CPU and the operating system. If we disable OpenSSL's support for AES-NI instructions, the
effect on performance is quite dramatic:

$ OPENSSL_ia32cap=0 openssl speed -evp aes-256-cbc

type … 256 bytes 1024 bytes 8192 bytes

aes-256-cbc 120009.39k 264001.19k 262821.68k

Using a processor such as the Core i7, it is possible to achieve performance of over 500 Mbps in both directions, as was shown in Chapter 9,
Troubleshooting and Tuning.

Additional improvements can be found utilizing --mssfix, --tun-mtu, and --fragment. When used together, speed increase of up to
400 percent can be achieved.

Other factors can contribute to performance problems outside of OpenVPN. Scaling beyond gigabit speeds will require an extensive redesign of
OpenVPN, as it requires an entirely different approach to handling such high levels of traffic. Keep in mind that network traffic is usually
processed in chunks of 1500 bytes (referred to as Maximum Transmission Unit (MTU)). For a gigabit link, this means that the operating
system kernel and the OpenVPN process need to handle roughly 80,000 packets per second. On a 10-gigabit link, this increases to well over
800,000 packets, which even the most modern processors cannot easily handle. Increasing the MTU from 1500 bytes to 9000 bytes, also known
as jumbo frames, reduces the packet count while not reducing the amount of bandwidth. Jumbo frames need to be supported by all nodes on the
network, or packet fragmentation can occur.

222

Where we are going
Starting in 2010, the open source developers began discussions about ways to improve the OpenVPN server process and improve efficiency. A
number of areas that could be improved were identified. Fortunately, the beginnings of this endeavor were completed with James' client code
rewrite for the iOS application. The official road maps for the coming v2.4 and the future v3.0 releases can be found on the OpenVPN
community wiki in the following locations:

http://community.openvpn.net/openvpn/wiki/OpenVPN2.4
http://community.openvpn.net/openvpn/wiki/RoadMap

More specifically, modularization for plugins, even making the OpenSSL and PolarSSL support modules, has been discussed. This will allow
for easier integration of other libraries as they become available, and even support for something entirely different from SSL could be achieved
with this approach. Better threading and process offloading is also being considered to improve the client connection volume and bandwidth
utilization.

Despite the great advancements we've already made, there's much room for improvement. A key issue, with no solution in sight, is support for
the development team. There are only a very small number of developers active and devoted to the project. The end result is a slow
development cycle and new features are rare.

Some items currently being worked on include better IPv6 support, proper Windows privilege separation, and TLS roaming.

A full list of current bugs is available on the OpenVPN community bug tracker. Patches are always welcome on the mailing list and well-written
and tested patches are certain to get quick approval. The link http://community.openvpn.net/openvpn/report/1 takes you directly to the open bug
reports.

Improved compression support
Starting with Version 2.4, OpenVPN will support different mechanisms for compressing the VPN traffic. Currently, only LZO2 compression is
supported, but in Version 2.4 you can also compile in support for the Snappy and LZ4 compression algorithms. This can improve performance
quite a bit, depending on the type of traffic that is flowing over the VPN. Plain web server traffic will see a nice performance boost, while hard-
to-compress traffic such as images or video files will likely see a small performance decrease due to the extra overhead of compressing and
decompressing each packet.

Per-client compression
In Version 2.3 and below, if compression is enabled at the server, it must also be enabled at the client. This has proven difficult to identify from
client logs in the past, as the tunnel just appeared to fail passing traffic. On the v2.4 roadmap, there is compression negotiation. This would
allow per-client compression, and even compression protocol/algorithm negotiation.

New cryptographic routines
In Version 2.4 support for Elliptic Curve authentication algorithms is included for the first time. It will not yet be possible to use Elliptic Curves
for all traffic, but it does allow the use of ECDSA based certificates.

Hopefully, we will also see support for GCM-based encryption in Version 2.4. GCM (Galois/Counter Mode) encryption, is more efficient and
performant than the currently used CBC (Cipher Block Chain) encryption routines.

Authenticated Encryption with Associated Data (AEAD) will also debut in v2.4.

Mixed certificate/username authentication
Currently, OpenVPN supports authentication using certificates and/or a username and password, but either/or is not possible. The option --
client-cert-not-required actually turns off certificate verification altogether.

In Version 2.4, it will be possible to support clients that connect using either a certificate, or a username and password, or both. This allows for
greater flexibility when granting users different levels of access to your VPN setup. For this, a new option is added.

verify-client-cert none: This is effectively the same as --client-cert-not-required.
verify-client-cert optional: This will verify the certificate supplied by the client, but it will not reject the connection if
verification fails.
verify-client-cert require: This will verify the certificate supplied by the client and reject the connection if verification
fails. This will be the default setting, as it effectively is the default in OpenVPN Version 2.3 and older.

The --client-cert-not-required option will be deprecated in the near future and is mentioned in the v3.0 roadmap.

IPv6 support
The networking code within OpenVPN uses separate functions for IPv4 and IPv6 code paths. A couple of years ago, there was a major overhaul
of how IPv4 was handled, but the work was never done for the IPv6 functions. OpenVPN 2.3 does support a completely native IPv6 transport as
well as encapsulated traffic. Using IPv6 DNS servers and garnering that information from DHCP isn't supported, but is on the roadmap for v2.4.

push "redirect-gateway ipv6" is also on the list. You can still imitate a default route with IPv6 by pushing the special routes
manually:

push "route-ipv6 ::/0 2600:dead:beef::1"

223

http://community.openvpn.net/openvpn/wiki/OpenVPN2.4
http://community.openvpn.net/openvpn/wiki/RoadMap
http://community.openvpn.net/openvpn/report/1

Windows privilege separation
OpenVPN currently requires administrative privileges on all client workstations. Users with standalone workstations should have the ability to
update configuration without administrative privileges, and the client application should have the ability to accept valid server configuration
assertions.

Two approaches have been presented to accomplish this. One of them is Windows-centric and the other one offers principles that can be
deployed or implemented on other platforms.

The first of the two is accomplished by providing an OpenVPN interactive service. Heiko Hund first suggested the approach in February 2012
(http://thread.gmane.org/gmane.network.openvpn.devel/5685/focus=5728). The concept includes a centralized service that acts as a wrapper
around another OpenVPN process. A client connection from an interactive user would start OpenVPN or the OpenVPN GUI and that process
would then connect to this service. The service would then take the arguments from the client and create the actual VPN tunnel, establishing
routes and other options.

Proper implementation has requirements not previously implemented or really considered. First, the private key needs to be properly protected:

To be complete, the wrapper [=interactive service] must also own the OpenVPN private key – otherwise the configuration would be
copyable by a non-privileged user, something that the enterprise model is determined to prevent. Protecting the private key can be
accomplished by storing the key in the system certificate/key store, and accessing the key through a Cryptographic Provider API such as
Crypto API on Windows, PKCS#11 on Linux, or Keychain on Mac.

 --James Yonan

Second, the interactive service must not allow access from other processes (non-OpenVPN) running as the same (current) user:

The pipe/socket to the privileged process [=interactive service] needs to be access-controlled so that only openvpn can use it. You don't
want to introduce a privilege escalation vulnerability where operations that would normally be privileged (like changing the default route)
can now be done by any process in user space just by leveraging on the OpenVPN pipe/socket.

 --James Yonan

Third:

Other non-privileged software might be able to access the APIs for these wrappers [=interactive service], for example by pushing routes
into the API. Malware that would normally be confined to user space can now perform privileged operations such as modifying the default
route. The end user can now connect to any VPN server of their choice (a major violation of enterprise model). What you've essentially
done with this model is introduce a privilege escalation vulnerability because operations that would normally require privilege, such as
adding routes, can now be done by a non-privileged user.

 --James Yonan

The second approach utilizes two or three separate COM+ objects, as suggested by Alon Bar-Lev in March 2012
(http://thread.gmane.org/gmane.network.openvpn.devel/5755/focus=5869). With this approach, three components are needed: the OpenVPN
GUI, the OpenVPN service, and the OpenVPN network handler.

The OpenVPN GUI would not change much from what it is today. It would continue to hand tasks and updates to a backend process. As there is
no current privilege separation, the current GUI does not need to handle any authorization. With the use of COM+ and the network OpenVPN
module, the GUI can be completely unprivileged.

224

http://thread.gmane.org/gmane.network.openvpn.devel/5685/focus=5728
http://thread.gmane.org/gmane.network.openvpn.devel/5755/focus=5869

Summary
After spending years in the OpenVPN IRC channel and on the OpenVPN support forum, there are some recurring difficulties among the server
administration user base: basic networking and routing, X.509 certificate management, and user or client authentication. Having now read this
book, you should have a solid grasp of these concepts and understand the underlying mechanisms. The differences between the tun and tap
virtual network adapters have been discussed as well.

OpenVPN is a very active open source project and is ever evolving. The techniques and examples within Mastering OpenVPN will likely not go
stale in the near future. Inefficiencies within the code are anticipated, however, so we strongly recommend that you read the manual (man page)
available at https://openvpn.net/index.php/open-source/documentation/manuals.html.

Like most open source projects, OpenVPN needs more help—more volunteers to help moderate the forum and help on IRC, and additional
developers to help increase the speed of development are all needed. There are aspirations to build a bounty system to aid in this effort. The
community is strong and the protocol is widely recognized.

There is a lot of work to do, but the feature set of OpenVPN compared to other VPN applications puts it right in line with expectations. If you
would like to get involved with the OpenVPN project, look through the following resources to identify interesting work and contact someone to
help you get started:

IRC: https://freenode.net #openvpn and #openvpn-devel
Web forum: https://forums.openvpn.net
Mailing list: http://sourceforge.net/p/openvpn/mailman/
Bug tracker: http://community.openvpn.net/openvpn/report/1
Man pages: https://openvpn.net/index.php/open-source/documentation/manuals.html

225

https://openvpn.net/index.php/open-source/documentation/manuals.html
https://freenode.net
https://forums.openvpn.net
http://sourceforge.net/p/openvpn/mailman/
http://community.openvpn.net/openvpn/report/1
https://openvpn.net/index.php/open-source/documentation/manuals.html

Index
A

Address Resolution Protocol (ARP) traffic
about / Address Resolution Protocol traffic

advanced configuration options
about / Advanced configuration options
Proxy ARP / Proxy ARP
public IP addresses, assigning to clients / Assigning public IP addresses to clients

advanced IP-less setup
about / Advanced IP-less setup

Android
OpenVPN Connect app, using for / Using the OpenVPN Connect app for Android

Android app
OpenVPN, using for / Using the OpenVPN for an Android app

auth-pam plugin
about / The auth-pam plugin

auth and tls-auth key mismatch
about / The auth and tls-auth key mismatch
fixing / How to fix

Authenticated Encryption with Associated Data (AEAD) / New cryptographic routines

B
backend authentication mechanism

LDAP, using as / Using LDAP as a backend authentication mechanism
basic production-level configuration files

about / Basic production-level configuration files
TCP-based configuration / TCP-based configuration
configuration files, for Windows / Configuration files for Windows

BF-CBC (Blowfish Cipher Block Chaining) / How to read the log files
bridges

use cases / Using the tap device (bridging)
bridging / Using the tap device (bridging)
bridging on, Linux

about / Bridging on Linux
network bridge, tearing down / Tearing down the bridge

broadcast
checking / Checking broadcast and non-IP traffic

C
CBC (Cipher Block Chain) / New cryptographic routines
Certificate Revocation List (CRL) / Building the CA
certificate revocation lists (CRLs) / An overview of PKI
Certificate Signing Request (CSR) / Building the CA
Cipher mismatch

about / The Cipher mismatch
fixing / How to fix

client-config-dir (CCD file)
about / Client-specific configuration – CCD files
push / Client-specific configuration – CCD files
push-reset / Client-specific configuration – CCD files
iroute / Client-specific configuration – CCD files
iroute-ipv6 / Client-specific configuration – CCD files
ifconfig-push / Client-specific configuration – CCD files
ifconfig-ipv6-push / Client-specific configuration – CCD files
disable / Client-specific configuration – CCD files
config / Client-specific configuration – CCD files
troubleshooting / How to determine whether a CCD file is properly processed
and topology net30 / CCD files and topology net30

client-config-dir issues
about / The client-config-dir issues
fixing / How to fix

client-connect scripts
about / Client-connect scripts
client authentication / Client authentication
client authorization / Client authorization

client-side routing
about / Client-side routing
network layout / Client-side routing
client-config-dir configuration / In-depth explanation of the client-config-dir configuration
client-to-client traffic / Client-to-client traffic

client-side script log
about / The client-side script log

client-side scripts

226

about / Client-side scripts
setenv option / --setenv and --setenv-safe
setenv-safe option / --setenv and --setenv-safe
script-security option / --script-security
up-restart option / --up-restart
tls-verify script / --tls-verify
ipchange script / --ipchange
up script / --up
route-up script / --route-up
route-pre-down script / --route-pre-down
down option / --down
environment variables / Environment variables set in the client-side scripts

client-to-client traffic
enabling / Enabling client-to-client traffic
filtering, between clients / Filtering traffic between clients
disadvantage of proxy_arp_pvlan method / Disadvantage of the proxy_arp_pvlan method
filtering, pf filter of OpenVPN used / Filtering traffic using the pf filter of OpenVPN

client/server mode
about / Understanding the client/server mode
advantages / Understanding the client/server mode
disadvantages / Understanding the client/server mode
initial setup / Initial setup of the client/server mode
server configuration file / Detailed explanation of the configuration files
client configuration file / Detailed explanation of the configuration files
topology subnet, versus topology net30 / Topology subnet versus topology net30

client authorization, client-connect scripts
about / Client authorization
client-selected routes / Example 1—client-selected routes
track client connection statistics / Example 2—track client connection statistics
user, disconnecting after X minutes / Example 3—disconnect user after X minutes

client certificate and private key mismatch
about / Client certificate and private key mismatch
fixing / How to fix

client certificate not recognized by the server
about / Client certificate not recognized by the server
fixing / How to fix

client certificates / Detailed explanation of the configuration files
client configuration file

client / Detailed explanation of the configuration files
proto udp / Detailed explanation of the configuration files
remote openvpnserver.example.com / Detailed explanation of the configuration files
port 1194 / Detailed explanation of the configuration files
dev tun / Detailed explanation of the configuration files
nobind / Detailed explanation of the configuration files
ca <path to CA file> / Detailed explanation of the configuration files
cert <path to X.509 certificate file> / Detailed explanation of the configuration files
key <path to private key file> / Detailed explanation of the configuration files

Client Identifier (CID) / Filtering traffic using the pf filter of OpenVPN
common configuration mistakes

fixing / Fixing common configuration mistakes
wrong CA certificate, in client configuration / Wrong CA certificate in the client configuration
client certificate, not recognized by server / Client certificate not recognized by the server
client certificate and private key mismatch / Client certificate and private key mismatch
auth and tls-auth key mismatch / The auth and tls-auth key mismatch
MTU size mismatch / The MTU size mismatch
Cipher mismatch / The Cipher mismatch
compression mismatch / The Compression mismatch
fragment mismatch / The fragment mismatch
tun, versus tap mismatch / The tun versus tap mismatch
no access, to tun device / No access to the tun device in Linux
missing elevated privileges, in Windows / Missing elevated privileges in Windows

Common Internet File Sharing (CIFS)
about / NetBIOS traffic

common name (CN) / Client certificates
complete setup

constructing / The complete setup
advanced IP-less setup / Advanced IP-less setup

compression mismatch
about / The Compression mismatch
fixing / How to fix

connection problems
troublehooting, nbtstat used / Using nbtstat to troubleshoot connection problems

CRYPtographic TOKen Interface / Background information
cryptoki standard / Background information

D
Deep Packet Inspection (DPI) / The encryption protocol

227

default gateway
redirecting / Redirecting the default gateway

Denial of Service (DoS) attack / What is a VPN?
Diffie-Hellman (DH) parameter file / Setting up the Public Key Infrastructure
Diffie-Hellman (DH) parameters / An overview of PKI
down-root plugin

about / Down-root

E
Easy-RSA, releases

reference / PKI using Easy-RSA
Encapsulated Security Payload (ESP) protocol / IPSec
environment variables, client-side scripts

about / Environment variables set in the client-side scripts
environment variables, server-side scripts

about / Environment variables set in the server-side scripts
up script / --up
route-up script / --route-up
tls-verify script / --tls-verify
auth-user-pass-verify script / --auth-user-pass-verify
client-connect script / --client-connect
learn-address script / --learn-address
client-disconnect script / --client-disconnect
route-pre-down script / --route-pre-down and --down
down script / --route-pre-down and --down

examples, of client scripts
about / Examples of client scripts
mount NFS share / Example 4—mount NFS share
scripts, using at once / Example 5—using all scripts at once

examples, of server scripts
about / Examples of server scripts
client-connect scripts / Client-connect scripts

existing VPN setup
smartphones, integrating into / Integrating smart phones into an existing VPN setup

Extended Key Usage (EKU) attributes / Checking certificate key usage attributes
external DHCP server

using / Using an external DHCP server
extra gateways

used, for modifying TAP-Win adapter location / Changing the TAP-Win adapter location using extra gateways
extra security

adding / Adding extra security
tls-auth keys, using / Using tls-auth keys
tls-auth keys, generating / Generating a tls-auth key
certificate key usage attributes, checking / Checking certificate key usage attributes

F
file sharing

enabling, over VPN / Enabling file sharing over VPN
enabling, NetBIOS names used / Using NetBIOS names

fragment mismatch
about / The fragment mismatch
fixing / How to fix

G
GCM (Galois/Counter Mode) / New cryptographic routines
General Routing Encapsulation (GRE) protocol

about / PPTP
Gigabit networking

about / Gigabit networking
Group Policy editor

used, for private adapter / Using the Group Policy editor to force an adapter to be private

H
Hardware Security Module (HSM) / Background information
Hash-based Message Authentication Code (HMAC) / IPSec
home router

using, as VPN client / Using a home router as a VPN client
using, as VPN server / Using a home router as a VPN server

HTTP
URL / SOCKS proxies

HTTP proxies
OpenVPN, using with / Using OpenVPN with HTTP or SOCKS proxies, HTTP proxies
about / HTTP proxies

I

228

initialization vector (IV) / The MTU size mismatch
Internet Relay Chat (IRC) / History of OpenVPN
Internet Service Providers (ISPs) / The UDP and TCP modes
Internetwork Packet eXchange (IPX) protocol

about / NetBIOS traffic
iOS

OpenVPN Connect app, using for / Using the OpenVPN Connect app for iOS
iperf

used, for optimizing performance / Using iperf
IPSec

about / IPSec
URL / IPSec
tunneling mode / IPSec
transport mode / IPSec
advantages / Advantages and disadvantages of IPSec
disadvantages / Advantages and disadvantages of IPSec

IPv6
using / Using IPv6
protected IPv6 traffic / Protected IPv6 traffic
using, as transit / Using IPv6 as transit

K
Key Identifier (KID) / Filtering traffic using the pf filter of OpenVPN

L
LDAP

uisng, as backend authentication mechanism / Using LDAP as a backend authentication mechanism
LDAP backend authentication

troubleshooting / Troubleshooting the LDAP backend authentication
Level 2 Tunneling Protocol (L2TP) / IPSec
Lightweight Directory Access Protocol (LDAP)

about / Using LDAP as a backend authentication mechanism
Linux

bridging on / Bridging on Linux
log files

reading / How to read the log files

M
Man-In-The-Middle (MITM) attack / Server certificates
Man in the Middle (MITM) attacks / What is a VPN?
maximum transfer unit (MTU) / The first example
Maximum Transfer Unit (MTU) / The MTU size mismatch
Maximum Transmission Unit (MTU) / Scaling at gigabit speeds and above
missing elevated privileges in Windows

about / Missing elevated privileges in Windows
fixing / How to fix

MTU size mismatch
about / The MTU size mismatch
fixing / How to fix

multiple CAs / Multiple CAs and CRLs
multiple CRLs / Multiple CAs and CRLs

N
nbtstat

used, for troubleshooting connection problems / Using nbtstat to troubleshoot connection problems
NetBIOS names

used, for enabling file sharing / Using NetBIOS names
NetBIOS traffic

about / NetBIOS traffic
networking blog

URL / Background
no access to tun device issue

about / No access to the tun device in Linux
fixing / How to fix

non-IP traffic
checking / Checking broadcast and non-IP traffic

non-working setup
detecting / Detecting a non-working setup

O
OpenSC project

URL / Supported platforms
Open Systems Interconnection (OSI) model

reference / Address Resolution Protocol traffic

229

OpenVPN
about / OpenVPN
advantages / Advantages and disadvantages of OpenVPN
disadvantages / Advantages and disadvantages of OpenVPN
history / History of OpenVPN
features, 1.x series / History of OpenVPN
features, OpenVPN 2.0 / History of OpenVPN
features, of OpenVPN 2.1 / History of OpenVPN
features, of OpenVPN 2.2 / History of OpenVPN
features, of OpenVPN 2.3 / History of OpenVPN
URL / The encryption protocol
using, with HTTP proxies / Using OpenVPN with HTTP or SOCKS proxies, HTTP proxies
using, with SOCKS proxies / Using OpenVPN with HTTP or SOCKS proxies, SOCKS proxies
basic setup / The basic setup
using, for Android app / Using the OpenVPN for an Android app
strengths / Current strengths
limitations / Current weaknesses, Scaling at gigabit speeds and above
future / Where we are going
improved compression support / Improved compression support
per-client compression / Per-client compression
new cryptographic routines / New cryptographic routines
mixed certificate/username authentication / Mixed certificate/username authentication
IPv6 support / IPv6 support
Windows privilege separation / Windows privilege separation

OpenVPN, filtering
about / Filtering OpenVPN
FreeBSD example / FreeBSD example
Windows example / A Windows example
policy-based routing / Policy-based routing

OpenVPN 2.3
about / Current strengths

OpenVPN app profile
creating / Creating an OpenVPN app profile

OpenVPN client certificates
about / OpenVPN client certificates

OpenVPN community
URL / Where we are going

OpenVPN Connect app
using, for Android / Using the OpenVPN Connect app for Android
using, for iOS / Using the OpenVPN Connect app for iOS

OpenVPN internals
about / OpenVPN internals
tun/tap driver / The tun/tap driver
UDP mode / The UDP and TCP modes
TCP mode / The UDP and TCP modes
encryption protocol / The encryption protocol
control and data channels / The control and data channels
cipher and hashing algorithms / Ciphers and hashing algorithms
OpenSSL, versus PolarSSL / OpenSSL versus PolarSSL

OpenVPN management interface
about / The OpenVPN management interface
management IP port [pw-file] / The OpenVPN management interface
management-client / The OpenVPN management interface
management-query-passwords / The OpenVPN management interface
management-hold / The OpenVPN management interface
management-signal / The OpenVPN management interface
management-client-auth / The OpenVPN management interface

OpenVPN manual page
URL / The OpenVPN management interface

OpenVPN packages
about / OpenVPN packages
open source (community) version / The open source (community) version
closed source (commercial) Access Server / The closed source (commercial) Access Server
mobile platform (mixed) OpenVPN/OpenVPN Connect / The mobile platform (mixed) OpenVPN/OpenVPN Connect
other platforms / Other platforms

OpenVPN PKI flow / An overview of PKI
OpenVPN secret keys

about / OpenVPN secret keys
multiple keys, using / Using multiple keys
different encryption, using / Using different encryption and authentication algorithms
authentication algorithms, using / Using different encryption and authentication algorithms

OpenVPN server certificates
about / OpenVPN server certificates

OpenVPN status file
about / The OpenVPN status file
reliable connection tracking, for UDP mode / Reliable connection tracking for UDP mode

OpenVPN traffic

230

analyzing, tcpdump used / Analyzing OpenVPN traffic by using tcpdump
OpenWRT

URL / Filtering OpenVPN

P
parameters, to redirect-gateway

no parameters added / Redirecting the default gateway
parameter def1 / Redirecting the default gateway
parameter bypass-dhcp / Redirecting the default gateway
parameter bypass-dns / Redirecting the default gateway

perfect forwarding secrecy (PFS) / Pros and cons of the key mode
performance

optimizing, ping used / Using ping
optimizing, iperf used / Using iperf

pfSense
URL / Filtering OpenVPN

ping
used, for optimizing performance / Using ping

PKCS#11
about / Extra security – hardware tokens, smart cards, and PKCS#11
background information / Background information
supported platforms / Supported platforms
hardware token, initializing / Initializing a hardware token
certificate, generating / Generating a certificate/private key pair
private key pair, generating / Generating a certificate/private key pair
private key, generating on token / Generating a private key on a token
certificate request, generating / Generating a certificate request
X.509 certificate, writing to token / Writing an X.509 certificate to the token
hardware token ID, obtaining / Getting a hardware token ID
hardware token, using with OpenVPN / Using a hardware token with OpenVPN

PKCS#11 devices
using / A note on PKCS#11 devices

PKCS#12 file
using / Using the PKCS#12 file

PKI
overview / An overview of PKI
using / An overview of PKI
using Easy-RSA / PKI using Easy-RSA
CA, building / Building the CA
certificate revocation list / Certificate revocation list
server certificates / Server certificates
client certificates / Client certificates
using ssl-admin / PKI using ssl-admin
setting up / Setting up the Public Key Infrastructure

Pluggable Authentication Module (PAM)
about / Using LDAP as a backend authentication mechanism

Pluggable Authentication Modules (PAM) stack
about / The auth-pam plugin

plugins
about / Plugins
down-root / Down-root
auth-pam plugin / The auth-pam plugin

point-to-point mode
combining, with certificates / Combining point-to-point mode with certificates

Point-to-Point Tunneling Protocol (PPTP)
about / PPTP
advantages / Advantages and disadvantages of PPTP
disadvantages / Advantages and disadvantages of PPTP

policy-based routing / Policy-based routing
pre-shared key mode

advantages / Pros and cons of the key mode
disadvantages / Pros and cons of the key mode
first example / The first example

Proxy ARP
about / Proxy ARP, How does Proxy ARP work?
network layout / Proxy ARP
working / How does Proxy ARP work?

public key infrastructure (PKI) / Pros and cons of the key mode

R
redirect-gateway

used, for modifying TAP-Win adapter location / Changing the TAP-Win adapter location using the redirect-gateway
disadvantage / Changing the TAP-Win adapter location using the redirect-gateway

Request For Comments (RFC)
about / SOCKS proxies

RFC2637

231

URL / PPTP
routing

about / Routing, Routing and server-side routing
configuration files, versus command line / Configuration files versus the command line
server-side routing / Routing and server-side routing
special parameters, for route option / Special parameters for the route option
masquerading / Masquerading

routing issues
troubleshooting / Troubleshooting routing issues, Drawing a detailed picture, Start in the middle and work your way outward, If
all else fails, use tcpdump

S
SafeNet

URL / Supported platforms
scripting

about / Scripting
server-side scripts / Server-side scripts
client-side scripts / Client-side scripts
examples, of server scripts / Examples of server scripts

server-side script log
about / The server-side script log

server-side scripts
about / Server-side scripts
setenv option / --setenv and --setenv-safe
setenv-safe option / --setenv and --setenv-safe
script-security option / --script-security
up-restart option / --up-restart
up script / --up
route-up script / --route-up
tls-verify script / --tls-verify
auth-user-pass-verify script / --auth-user-pass-verify
client-connect script / --client-connect, --client-disconnect
learn-address script / --learn-address
route-pre-down script / --route-pre-down
down option / --down
environment variables / Environment variables set in the server-side scripts

server configuration file
proto udp / Detailed explanation of the configuration files
port 1194 / Detailed explanation of the configuration files
dev tun / Detailed explanation of the configuration files
server 10.200.0.0 255.255.255.0 / Detailed explanation of the configuration files
topology subnet / Detailed explanation of the configuration files
persist-tun / Detailed explanation of the configuration files
persist-key / Detailed explanation of the configuration files
keepalive 10 60 / Detailed explanation of the configuration files
dh <path to Diffie Hellman file> / Detailed explanation of the configuration files
ca <path to CA file> / Detailed explanation of the configuration files
cert <path to X.509 certificate file> / Detailed explanation of the configuration files
key <path to private key file> / Detailed explanation of the configuration files
user nobody / Detailed explanation of the configuration files
group nobody / Detailed explanation of the configuration files
verb 3 / Detailed explanation of the configuration files
daemon / Detailed explanation of the configuration files
log-append <path to log file> / Detailed explanation of the configuration files

session key renegotiation
about / Session key renegotiation
reneg-sec N option / Session key renegotiation
reneg-bytes N option / Session key renegotiation
reneg-pkts N option / Session key renegotiation
reneg options / Session key renegotiation

smartphones
integrating, into existing VPN setup / Integrating smart phones into an existing VPN setup

SOCKS5
URL / SOCKS proxies

SOCKS proxies
OpenVPN, using with / Using OpenVPN with HTTP or SOCKS proxies, SOCKS proxies
about / SOCKS proxies
URL / SOCKS proxies

ssl-admin
features / Other features

SSL-based VPNs
about / SSL-based VPNs
advantages / Advantages and disadvantages of SSL-based VPNs
disadvantages / Advantages and disadvantages of SSL-based VPNs

T

232

TAP-Win adapter location
modifying, redirect-gateway used / Changing the TAP-Win adapter location using the redirect-gateway
modifying, extra gateways used / Changing the TAP-Win adapter location using extra gateways
traffic, redirecting in combination with extra gateways / Redirecting all traffic in combination with extra gateways

tap adapter
bridging, on both ends / Bridged tap adapter on both ends
bridges, removing / Removing the bridges

tap device
using / Using the tap device (bridging)

tcpdump
used, for analyzing OpenVPN traffic / Analyzing OpenVPN traffic by using tcpdump

TCP protocol
about / TCP protocol and different ports
ports / TCP protocol and different ports
TAP mode / The TAP mode
topology subnet / The topology subnet
cleartext tunnel / The cleartext tunnel

three-way routing
about / Three-way routing
configuring / Three-way routing
network layout / Three-way routing
route / Route, net_gateway, vpn_gateway, and metrics
net_gateway / Route, net_gateway, vpn_gateway, and metrics
vpn_gateway / Route, net_gateway, vpn_gateway, and metrics
metrics / Route, net_gateway, vpn_gateway, and metrics

tls-auth keys
using / Using tls-auth keys
generating / Generating a tls-auth key

TLS Cipher
about / Using a home router as a VPN client

topology subnet mode / Topology subnet versus topology net30
tun, versus tap mismatch

fixing / How to fix
tun mode, versus tap mode

about / Comparing tun mode to tap mode
layer 2, versus layer 3 / Layer 2 versus layer 3
routing differences / Routing differences and iroute
iroute / Routing differences and iroute
client-to-client filtering / Client-to-client filtering
broadcast traffic / Broadcast traffic and "chattiness" of the network
bridging / Bridging

types, VPNs
PPTP / PPTP
IPSec / IPSec
SSL-based VPNs / SSL-based VPNs
OpenVPN / OpenVPN

V
Virtual Private Network (VPN) clients / Enabling client-to-client traffic
Virtual Private Server (VPS) / No access to the tun device in Linux
VPN

about / What is a VPN?
examples, of applications / What is a VPN?
types / Types of VPNs
comparison / Comparison of VPNs
file sharing, enabling over / Enabling file sharing over VPN

VPN client
home router, using as / Using a home router as a VPN client

VPN products
categories / Types of VPNs

VPN server
home router, using as / Using a home router as a VPN server

W
WhatIsMyIP.com

URL / Redirecting all traffic in combination with extra gateways
Windows

bridging on / Bridging on Windows
Windows network location

about / Windows network locations – public versus private
background / Background

Wireshark
URL / If all else fails, use tcpdump, Analyzing OpenVPN traffic by using tcpdump

wireshark
about / Checking broadcast and non-IP traffic

wrong CA certificate in client configuration

233

about / Wrong CA certificate in the client configuration
fixing / How to fix

234

Table of Contents

Mastering OpenVPN 8
Credits 9
About the Authors 10
About the Reviewers 11
www.PacktPub.com 12
Support files, eBooks, discount offers, and more 12
Why subscribe? 12
Free access for Packt account holders 12
Preface 13
What this book covers 13
What you need for this book 14
Who this book is for 15
Conventions 16
Reader feedback 17
Customer support 18
Downloading the example code 18
Errata 18
Piracy 18
Questions 18
1. Introduction to OpenVPN 19
What is a VPN? 19
Types of VPNs 21
PPTP 21
IPSec 21
SSL-based VPNs 21
OpenVPN 22
Comparison of VPNs 23
Advantages and disadvantages of PPTP 23
Advantages and disadvantages of IPSec 23
Advantages and disadvantages of SSL-based VPNs 23
Advantages and disadvantages of OpenVPN 23
History of OpenVPN 23
OpenVPN packages 26
The open source (community) version 26

235

The closed source (commercial) Access Server 26
The mobile platform (mixed) OpenVPN/OpenVPN Connect 26
Other platforms 26
OpenVPN internals 27
The tun/tap driver 27
The UDP and TCP modes 28
The encryption protocol 28
The control and data channels 28
Ciphers and hashing algorithms 29
OpenSSL versus PolarSSL 30
Summary 31
2. Point-to-point Mode 32
Pros and cons of the key mode 32
The first example 32
TCP protocol and different ports 34
The TAP mode 34
The topology subnet 34
The cleartext tunnel 35
OpenVPN secret keys 36
Using multiple keys 37
Using different encryption and authentication algorithms 37
Routing 39
Configuration files versus the command line 40
The complete setup 41
Advanced IP-less setup 42
Three-way routing 45
Route, net_gateway, vpn_gateway, and metrics 47
Bridged tap adapter on both ends 48
Removing the bridges 49
Combining point-to-point mode with certificates 51
Summary 53
3. PKIs and Certificates 54
An overview of PKI 54
PKI using Easy-RSA 55
Building the CA 56
Certificate revocation list 57

236

Server certificates 58
Client certificates 59
PKI using ssl-admin 60
OpenVPN server certificates 63
OpenVPN client certificates 65
Other features 67
Multiple CAs and CRLs 68
Extra security – hardware tokens, smart cards, and PKCS#11 69
Background information 69
Supported platforms 69
Initializing a hardware token 69
Generating a certificate/private key pair 70
Generating a private key on a token 70
Generating a certificate request 70
Writing an X.509 certificate to the token 71
Getting a hardware token ID 72
Using a hardware token with OpenVPN 72
Summary 73
4. Client/Server Mode with tun Devices 74
Understanding the client/server mode 74
Setting up the Public Key Infrastructure 75
Initial setup of the client/server mode 76
Detailed explanation of the configuration files 77
Topology subnet versus topology net30 79
Adding extra security 80
Using tls-auth keys 80
Generating a tls-auth key 80
Checking certificate key usage attributes 80
Basic production-level configuration files 82
TCP-based configuration 83
Configuration files for Windows 83
Routing and server-side routing 85
Special parameters for the route option 87
Masquerading 87
Redirecting the default gateway 88
Client-specific configuration – CCD files 90

237

How to determine whether a CCD file is properly processed 90
CCD files and topology net30 91
Client-side routing 92
In-depth explanation of the client-config-dir configuration 92
Client-to-client traffic 93
The OpenVPN status file 94
Reliable connection tracking for UDP mode 94
The OpenVPN management interface 96
Session key renegotiation 98
A note on PKCS#11 devices 98
Using IPv6 100
Protected IPv6 traffic 100
Using IPv6 as transit 101
Advanced configuration options 103
Proxy ARP 103
How does Proxy ARP work? 104
Assigning public IP addresses to clients 105
Summary 108
5. Advanced Deployment Scenarios in tun Mode 109
Enabling file sharing over VPN 109
Using NetBIOS names 111
Using nbtstat to troubleshoot connection problems 113
Using LDAP as a backend authentication mechanism 115
Troubleshooting the LDAP backend authentication 116
Filtering OpenVPN 118
FreeBSD example 118
A Windows example 119
Policy-based routing 128
Windows network locations – public versus private 129
Background 129
Changing the TAP-Win adapter location using the redirect-gateway 129
Using the Group Policy editor to force an adapter to be private 132
Changing the TAP-Win adapter location using extra gateways 134
Redirecting all traffic in combination with extra gateways 135
Using OpenVPN with HTTP or SOCKS proxies 138
HTTP proxies 138

238

SOCKS proxies 138
Summary 140
6. Client/Server Mode with tap Devices 141
The basic setup 141
Enabling client-to-client traffic 143
Filtering traffic between clients 143
Disadvantage of the proxy_arp_pvlan method 144
Filtering traffic using the pf filter of OpenVPN 144
Using the tap device (bridging) 147
Bridging on Linux 147
Tearing down the bridge 148
Bridging on Windows 148
Using an external DHCP server 153
Checking broadcast and non-IP traffic 155
Address Resolution Protocol traffic 155
NetBIOS traffic 155
Comparing tun mode to tap mode 157
Layer 2 versus layer 3 157
Routing differences and iroute 157
Client-to-client filtering 157
Broadcast traffic and "chattiness" of the network 157
Bridging 157
Summary 159
7. Scripting and Plugins 160
Scripting 160
Server-side scripts 160
--setenv and --setenv-safe 160
--script-security 160
--up-restart 161
--up 161
--route-up 161
--tls-verify 161
--auth-user-pass-verify 161
--client-connect 161
--learn-address 161
--client-disconnect 161

239

--route-pre-down 161
--down 161
Client-side scripts 161
--setenv and --setenv-safe 161
--script-security 162
--up-restart 162
--tls-verify 162
--ipchange 162
--up 162
--route-up 162
--route-pre-down 162
--down 162
Examples of server scripts 162
Client-connect scripts 162
Client authentication 162
Client authorization 164
Example 1—client-selected routes 164
Example 2—track client connection statistics 165
Example 3—disconnect user after X minutes 166
Examples of client scripts 167
Example 4—mount NFS share 167
Example 5—using all scripts at once 168
The server-side script log 171
Environment variables set in the server-side scripts 172
--up 172
--route-up 172
--tls-verify 173
--auth-user-pass-verify 173
--client-connect 173
--learn-address 173
--client-disconnect 173
--route-pre-down and --down 174
The client-side script log 174
Environment variables set in the client-side scripts 174
Plugins 176
Down-root 176

240

The auth-pam plugin 176
Summary 178
8. Using OpenVPN on Mobile Devices and Home Routers 179
Using the OpenVPN for an Android app 179
Creating an OpenVPN app profile 179
Using the PKCS#12 file 182
Using the OpenVPN Connect app for Android 184
Using the OpenVPN Connect app for iOS 186
Integrating smart phones into an existing VPN setup 190
Using a home router as a VPN client 191
Using a home router as a VPN server 193
Summary 195
9. Troubleshooting and Tuning 196
How to read the log files 196
Detecting a non-working setup 198
Fixing common configuration mistakes 200
Wrong CA certificate in the client configuration 200
How to fix 200
Client certificate not recognized by the server 200
How to fix 201
Client certificate and private key mismatch 201
How to fix 201
The auth and tls-auth key mismatch 202
How to fix 202
The MTU size mismatch 203
How to fix 204
The Cipher mismatch 204
How to fix 204
The Compression mismatch 204
How to fix 205
The fragment mismatch 205
How to fix 205
The tun versus tap mismatch 205
How to fix 206
The client-config-dir issues 206
How to fix 206

241

No access to the tun device in Linux 206
How to fix 207
Missing elevated privileges in Windows 207
How to fix 208
Troubleshooting routing issues 210
Drawing a detailed picture 210
Start in the middle and work your way outward 211
Find a time to temporarily disable firewall 212
If all else fails, use tcpdump 212
How to optimize performance by using ping and iperf 214
Using ping 214
Using iperf 214
Gigabit networking 215
Analyzing OpenVPN traffic by using tcpdump 217
Summary 220
10. Future Directions 221
Current strengths 221
Current weaknesses 222
Scaling at gigabit speeds and above 222
Where we are going 223
Improved compression support 223
Per-client compression 223
New cryptographic routines 223
Mixed certificate/username authentication 223
IPv6 support 223
Windows privilege separation 224
Summary 225
Index 226

242

	Mastering OpenVPN
	Table of Contents
	1. Introduction to OpenVPN
	What is a VPN?
	Types of VPNs
	PPTP
	IPSec
	SSL-based VPNs
	OpenVPN
	Comparison of VPNs
	Advantages and disadvantages of PPTP
	Advantages and disadvantages of IPSec
	Advantages and disadvantages of SSL-based VPNs
	Advantages and disadvantages of OpenVPN
	History of OpenVPN
	OpenVPN packages
	The open source (community) version
	The closed source (commercial) Access Server
	The mobile platform (mixed) OpenVPN/OpenVPN Connect
	Other platforms
	OpenVPN internals
	The tun/tap driver
	The UDP and TCP modes
	The encryption protocol
	The control and data channels
	Ciphers and hashing algorithms
	OpenSSL versus PolarSSL
	Summary

	2. Point-to-point Mode
	Pros and cons of the key mode
	The first example
	TCP protocol and different ports
	The TAP mode
	The topology subnet
	The cleartext tunnel
	OpenVPN secret keys
	Using multiple keys
	Using different encryption and authentication algorithms
	Routing
	Configuration files versus the command line
	The complete setup
	Advanced IP-less setup
	Three-way routing
	Route, net_gateway, vpn_gateway, and metrics
	Bridged tap adapter on both ends
	Removing the bridges
	Combining point-to-point mode with certificates
	Summary

	3. PKIs and Certificates
	An overview of PKI
	PKI using Easy-RSA
	Building the CA
	Certificate revocation list
	Server certificates
	Client certificates
	PKI using ssl-admin
	OpenVPN server certificates
	OpenVPN client certificates
	Other features
	Multiple CAs and CRLs
	Extra security – hardware tokens, smart cards, and PKCS#11
	Background information
	Supported platforms
	Initializing a hardware token
	Generating a certificate/private key pair
	Generating a private key on a token
	Generating a certificate request
	Writing an X.509 certificate to the token
	Getting a hardware token ID
	Using a hardware token with OpenVPN
	Summary

	4. Client/Server Mode with tun Devices
	Understanding the client/server mode
	Setting up the Public Key Infrastructure
	Initial setup of the client/server mode
	Detailed explanation of the configuration files
	Topology subnet versus topology net30
	Adding extra security
	Using tls-auth keys
	Generating a tls-auth key
	Checking certificate key usage attributes
	Basic production-level configuration files
	TCP-based configuration
	Configuration files for Windows
	Routing and server-side routing
	Special parameters for the route option
	Masquerading
	Redirecting the default gateway
	Client-specific configuration – CCD files
	How to determine whether a CCD file is properly processed
	CCD files and topology net30
	Client-side routing
	In-depth explanation of the client-config-dir configuration
	Client-to-client traffic
	The OpenVPN status file
	Reliable connection tracking for UDP mode
	The OpenVPN management interface
	Session key renegotiation
	A note on PKCS#11 devices
	Using IPv6
	Protected IPv6 traffic
	Using IPv6 as transit
	Advanced configuration options
	Proxy ARP
	How does Proxy ARP work?
	Assigning public IP addresses to clients
	Summary

	5. Advanced Deployment Scenarios in tun Mode
	Enabling file sharing over VPN
	Using NetBIOS names
	Using nbtstat to troubleshoot connection problems
	Using LDAP as a backend authentication mechanism
	Troubleshooting the LDAP backend authentication
	Filtering OpenVPN
	FreeBSD example
	A Windows example
	Policy-based routing
	Windows network locations – public versus private
	Background
	Changing the TAP-Win adapter location using the redirect-gateway
	Using the Group Policy editor to force an adapter to be private
	Changing the TAP-Win adapter location using extra gateways
	Redirecting all traffic in combination with extra gateways
	Using OpenVPN with HTTP or SOCKS proxies
	HTTP proxies
	SOCKS proxies
	Summary

	6. Client/Server Mode with tap Devices
	The basic setup
	Enabling client-to-client traffic
	Filtering traffic between clients
	Disadvantage of the proxy_arp_pvlan method
	Filtering traffic using the pf filter of OpenVPN
	Using the tap device (bridging)
	Bridging on Linux
	Tearing down the bridge
	Bridging on Windows
	Using an external DHCP server
	Checking broadcast and non-IP traffic
	Address Resolution Protocol traffic
	NetBIOS traffic
	Comparing tun mode to tap mode
	Layer 2 versus layer 3
	Routing differences and iroute
	Client-to-client filtering
	Broadcast traffic and "chattiness" of the network
	Bridging
	Summary

	7. Scripting and Plugins
	Scripting
	Server-side scripts
	--setenv and --setenv-safe
	--script-security
	--up-restart
	--up
	--route-up
	--tls-verify
	--auth-user-pass-verify
	--client-connect
	--learn-address
	--client-disconnect
	--route-pre-down
	--down
	Client-side scripts
	--setenv and --setenv-safe
	--script-security
	--up-restart
	--tls-verify
	--ipchange
	--up
	--route-up
	--route-pre-down
	--down
	Examples of server scripts
	Client-connect scripts
	Client authentication
	Client authorization
	Example 1—client-selected routes
	Example 2—track client connection statistics
	Example 3—disconnect user after X minutes
	Examples of client scripts
	Example 4—mount NFS share
	Example 5—using all scripts at once
	The server-side script log
	Environment variables set in the server-side scripts
	--up
	--route-up
	--tls-verify
	--auth-user-pass-verify
	--client-connect
	--learn-address
	--client-disconnect
	--route-pre-down and --down
	The client-side script log
	Environment variables set in the client-side scripts
	Plugins
	Down-root
	The auth-pam plugin
	Summary

	8. Using OpenVPN on Mobile Devices and Home Routers
	Using the OpenVPN for an Android app
	Creating an OpenVPN app profile
	Using the PKCS#12 file
	Using the OpenVPN Connect app for Android
	Using the OpenVPN Connect app for iOS
	Integrating smart phones into an existing VPN setup
	Using a home router as a VPN client
	Using a home router as a VPN server
	Summary

	9. Troubleshooting and Tuning
	How to read the log files
	Detecting a non-working setup
	Fixing common configuration mistakes
	Wrong CA certificate in the client configuration
	How to fix
	Client certificate not recognized by the server
	How to fix
	Client certificate and private key mismatch
	How to fix
	The auth and tls-auth key mismatch
	How to fix
	The MTU size mismatch
	How to fix
	The Cipher mismatch
	How to fix
	The Compression mismatch
	How to fix
	The fragment mismatch
	How to fix
	The tun versus tap mismatch
	How to fix
	The client-config-dir issues
	How to fix
	No access to the tun device in Linux
	How to fix
	Missing elevated privileges in Windows
	How to fix
	Troubleshooting routing issues
	Drawing a detailed picture
	Start in the middle and work your way outward
	Find a time to temporarily disable firewall
	If all else fails, use tcpdump
	How to optimize performance by using ping and iperf
	Using ping
	Using iperf
	Gigabit networking
	Analyzing OpenVPN traffic by using tcpdump
	Summary

	10. Future Directions
	Current strengths
	Current weaknesses
	Scaling at gigabit speeds and above
	Where we are going
	Improved compression support
	Per-client compression
	New cryptographic routines
	Mixed certificate/username authentication
	IPv6 support
	Windows privilege separation
	Summary

	Index

